Metamath Proof Explorer


Theorem marypha2lem2

Description: Lemma for marypha2 . Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypothesis marypha2lem.t T = x A x × F x
Assertion marypha2lem2 T = x y | x A y F x

Proof

Step Hyp Ref Expression
1 marypha2lem.t T = x A x × F x
2 sneq x = z x = z
3 fveq2 x = z F x = F z
4 2 3 xpeq12d x = z x × F x = z × F z
5 4 cbviunv x A x × F x = z A z × F z
6 df-xp z × F z = x y | x z y F z
7 6 a1i z A z × F z = x y | x z y F z
8 7 iuneq2i z A z × F z = z A x y | x z y F z
9 iunopab z A x y | x z y F z = x y | z A x z y F z
10 velsn x z x = z
11 equcom x = z z = x
12 10 11 bitri x z z = x
13 12 anbi1i x z y F z z = x y F z
14 13 rexbii z A x z y F z z A z = x y F z
15 fveq2 z = x F z = F x
16 15 eleq2d z = x y F z y F x
17 16 ceqsrexbv z A z = x y F z x A y F x
18 14 17 bitri z A x z y F z x A y F x
19 18 opabbii x y | z A x z y F z = x y | x A y F x
20 8 9 19 3eqtri z A z × F z = x y | x A y F x
21 1 5 20 3eqtri T = x y | x A y F x