Metamath Proof Explorer


Theorem marypha2lem4

Description: Lemma for marypha2 . Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015)

Ref Expression
Hypothesis marypha2lem.t T = x A x × F x
Assertion marypha2lem4 F Fn A X A T X = F X

Proof

Step Hyp Ref Expression
1 marypha2lem.t T = x A x × F x
2 1 marypha2lem2 T = x y | x A y F x
3 2 imaeq1i T X = x y | x A y F x X
4 df-ima x y | x A y F x X = ran x y | x A y F x X
5 3 4 eqtri T X = ran x y | x A y F x X
6 resopab2 X A x y | x A y F x X = x y | x X y F x
7 6 adantl F Fn A X A x y | x A y F x X = x y | x X y F x
8 7 rneqd F Fn A X A ran x y | x A y F x X = ran x y | x X y F x
9 rnopab ran x y | x X y F x = y | x x X y F x
10 df-rex x X y F x x x X y F x
11 10 bicomi x x X y F x x X y F x
12 11 abbii y | x x X y F x = y | x X y F x
13 df-iun x X F x = y | x X y F x
14 12 13 eqtr4i y | x x X y F x = x X F x
15 14 a1i F Fn A X A y | x x X y F x = x X F x
16 9 15 eqtrid F Fn A X A ran x y | x X y F x = x X F x
17 8 16 eqtrd F Fn A X A ran x y | x A y F x X = x X F x
18 5 17 eqtrid F Fn A X A T X = x X F x
19 fnfun F Fn A Fun F
20 19 adantr F Fn A X A Fun F
21 funiunfv Fun F x X F x = F X
22 20 21 syl F Fn A X A x X F x = F X
23 18 22 eqtrd F Fn A X A T X = F X