Database
BASIC LINEAR ALGEBRA
Matrices
Matrices of dimension 0 and 1
mat0dim0
Next ⟩
mat0dimid
Metamath Proof Explorer
Ascii
Unicode
Theorem
mat0dim0
Description:
The zero of the algebra of matrices with dimension 0.
(Contributed by
AV
, 6-Aug-2019)
Ref
Expression
Hypothesis
mat0dim.a
⊢
A
=
∅
Mat
R
Assertion
mat0dim0
⊢
R
∈
Ring
→
0
A
=
∅
Proof
Step
Hyp
Ref
Expression
1
mat0dim.a
⊢
A
=
∅
Mat
R
2
0fin
⊢
∅
∈
Fin
3
1
matring
⊢
∅
∈
Fin
∧
R
∈
Ring
→
A
∈
Ring
4
2
3
mpan
⊢
R
∈
Ring
→
A
∈
Ring
5
ringgrp
⊢
A
∈
Ring
→
A
∈
Grp
6
eqid
⊢
Base
A
=
Base
A
7
eqid
⊢
0
A
=
0
A
8
6
7
grpidcl
⊢
A
∈
Grp
→
0
A
∈
Base
A
9
4
5
8
3syl
⊢
R
∈
Ring
→
0
A
∈
Base
A
10
1
fveq2i
⊢
Base
A
=
Base
∅
Mat
R
11
mat0dimbas0
⊢
R
∈
Ring
→
Base
∅
Mat
R
=
∅
12
10
11
syl5eq
⊢
R
∈
Ring
→
Base
A
=
∅
13
12
eleq2d
⊢
R
∈
Ring
→
0
A
∈
Base
A
↔
0
A
∈
∅
14
elsni
⊢
0
A
∈
∅
→
0
A
=
∅
15
13
14
syl6bi
⊢
R
∈
Ring
→
0
A
∈
Base
A
→
0
A
=
∅
16
9
15
mpd
⊢
R
∈
Ring
→
0
A
=
∅