Metamath Proof Explorer


Theorem mat0dim0

Description: The zero of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypothesis mat0dim.a A = Mat R
Assertion mat0dim0 R Ring 0 A =

Proof

Step Hyp Ref Expression
1 mat0dim.a A = Mat R
2 0fin Fin
3 1 matring Fin R Ring A Ring
4 2 3 mpan R Ring A Ring
5 ringgrp A Ring A Grp
6 eqid Base A = Base A
7 eqid 0 A = 0 A
8 6 7 grpidcl A Grp 0 A Base A
9 4 5 8 3syl R Ring 0 A Base A
10 1 fveq2i Base A = Base Mat R
11 mat0dimbas0 R Ring Base Mat R =
12 10 11 syl5eq R Ring Base A =
13 12 eleq2d R Ring 0 A Base A 0 A
14 elsni 0 A 0 A =
15 13 14 syl6bi R Ring 0 A Base A 0 A =
16 9 15 mpd R Ring 0 A =