Metamath Proof Explorer


Theorem mat0dimbas0

Description: The empty set is the one and only matrix of dimension 0, called "the empty matrix". (Contributed by AV, 27-Feb-2019)

Ref Expression
Assertion mat0dimbas0 R V Base Mat R =

Proof

Step Hyp Ref Expression
1 0xp × =
2 1 a1i R V × =
3 2 oveq2d R V Base R × = Base R
4 fvex Base R V
5 map0e Base R V Base R = 1 𝑜
6 4 5 mp1i R V Base R = 1 𝑜
7 3 6 eqtrd R V Base R × = 1 𝑜
8 0fin Fin
9 eqid Mat R = Mat R
10 eqid Base R = Base R
11 9 10 matbas2 Fin R V Base R × = Base Mat R
12 8 11 mpan R V Base R × = Base Mat R
13 df1o2 1 𝑜 =
14 13 a1i R V 1 𝑜 =
15 7 12 14 3eqtr3d R V Base Mat R =