Step |
Hyp |
Ref |
Expression |
1 |
|
mat0dim.a |
|
2 |
|
0fin |
|
3 |
1
|
matring |
|
4 |
2 3
|
mpan |
|
5 |
|
mat0dimbas0 |
|
6 |
1
|
eqcomi |
|
7 |
6
|
fveq2i |
|
8 |
7
|
eqeq1i |
|
9 |
|
eqidd |
|
10 |
|
0ex |
|
11 |
|
oveq1 |
|
12 |
|
oveq2 |
|
13 |
11 12
|
eqeq12d |
|
14 |
13
|
ralbidv |
|
15 |
10 14
|
ralsn |
|
16 |
|
oveq2 |
|
17 |
|
oveq1 |
|
18 |
16 17
|
eqeq12d |
|
19 |
10 18
|
ralsn |
|
20 |
15 19
|
bitri |
|
21 |
9 20
|
sylibr |
|
22 |
|
raleq |
|
23 |
22
|
raleqbi1dv |
|
24 |
23
|
adantr |
|
25 |
21 24
|
mpbird |
|
26 |
25
|
ex |
|
27 |
8 26
|
sylbi |
|
28 |
5 27
|
mpcom |
|
29 |
|
eqid |
|
30 |
|
eqid |
|
31 |
29 30
|
iscrng2 |
|
32 |
4 28 31
|
sylanbrc |
|