Metamath Proof Explorer


Theorem mat0dimid

Description: The identity of the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypothesis mat0dim.a A = Mat R
Assertion mat0dimid R Ring 1 A =

Proof

Step Hyp Ref Expression
1 mat0dim.a A = Mat R
2 0fin Fin
3 1 matring Fin R Ring A Ring
4 2 3 mpan R Ring A Ring
5 eqid Base A = Base A
6 eqid 1 A = 1 A
7 5 6 ringidcl A Ring 1 A Base A
8 4 7 syl R Ring 1 A Base A
9 1 fveq2i Base A = Base Mat R
10 mat0dimbas0 R Ring Base Mat R =
11 9 10 syl5eq R Ring Base A =
12 11 eleq2d R Ring 1 A Base A 1 A
13 elsni 1 A 1 A =
14 12 13 syl6bi R Ring 1 A Base A 1 A =
15 8 14 mpd R Ring 1 A =