Metamath Proof Explorer


Theorem mat0dimscm

Description: The scalar multiplication in the algebra of matrices with dimension 0. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypothesis mat0dim.a A = Mat R
Assertion mat0dimscm R Ring X Base R X A =

Proof

Step Hyp Ref Expression
1 mat0dim.a A = Mat R
2 simpl R Ring X Base R R Ring
3 0fin Fin
4 1 matlmod Fin R Ring A LMod
5 3 2 4 sylancr R Ring X Base R A LMod
6 1 matsca2 Fin R Ring R = Scalar A
7 3 6 mpan R Ring R = Scalar A
8 7 fveq2d R Ring Base R = Base Scalar A
9 8 eleq2d R Ring X Base R X Base Scalar A
10 9 biimpa R Ring X Base R X Base Scalar A
11 0ex V
12 11 snid
13 1 fveq2i Base A = Base Mat R
14 mat0dimbas0 R Ring Base Mat R =
15 13 14 syl5eq R Ring Base A =
16 12 15 eleqtrrid R Ring Base A
17 16 adantr R Ring X Base R Base A
18 eqid Base A = Base A
19 eqid Scalar A = Scalar A
20 eqid A = A
21 eqid Base Scalar A = Base Scalar A
22 18 19 20 21 lmodvscl A LMod X Base Scalar A Base A X A Base A
23 5 10 17 22 syl3anc R Ring X Base R X A Base A
24 15 eleq2d R Ring X A Base A X A
25 elsni X A X A =
26 24 25 syl6bi R Ring X A Base A X A =
27 2 23 26 sylc R Ring X Base R X A =