Database
BASIC LINEAR ALGEBRA
Matrices
Square matrices
mat0op
Next ⟩
matsca2
Metamath Proof Explorer
Ascii
Unicode
Theorem
mat0op
Description:
Value of a zero matrix as operation.
(Contributed by
AV
, 2-Dec-2018)
Ref
Expression
Hypotheses
mat0op.a
⊢
A
=
N
Mat
R
mat0op.z
⊢
0
˙
=
0
R
Assertion
mat0op
⊢
N
∈
Fin
∧
R
∈
Ring
→
0
A
=
i
∈
N
,
j
∈
N
⟼
0
˙
Proof
Step
Hyp
Ref
Expression
1
mat0op.a
⊢
A
=
N
Mat
R
2
mat0op.z
⊢
0
˙
=
0
R
3
eqid
⊢
R
freeLMod
N
×
N
=
R
freeLMod
N
×
N
4
1
3
mat0
⊢
N
∈
Fin
∧
R
∈
Ring
→
0
R
freeLMod
N
×
N
=
0
A
5
fconstmpo
⊢
N
×
N
×
0
R
=
i
∈
N
,
j
∈
N
⟼
0
R
6
simpr
⊢
N
∈
Fin
∧
R
∈
Ring
→
R
∈
Ring
7
sqxpexg
⊢
N
∈
Fin
→
N
×
N
∈
V
8
7
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
→
N
×
N
∈
V
9
eqid
⊢
0
R
=
0
R
10
3
9
frlm0
⊢
R
∈
Ring
∧
N
×
N
∈
V
→
N
×
N
×
0
R
=
0
R
freeLMod
N
×
N
11
6
8
10
syl2anc
⊢
N
∈
Fin
∧
R
∈
Ring
→
N
×
N
×
0
R
=
0
R
freeLMod
N
×
N
12
2
eqcomi
⊢
0
R
=
0
˙
13
12
a1i
⊢
i
∈
N
∧
j
∈
N
→
0
R
=
0
˙
14
13
mpoeq3ia
⊢
i
∈
N
,
j
∈
N
⟼
0
R
=
i
∈
N
,
j
∈
N
⟼
0
˙
15
14
a1i
⊢
N
∈
Fin
∧
R
∈
Ring
→
i
∈
N
,
j
∈
N
⟼
0
R
=
i
∈
N
,
j
∈
N
⟼
0
˙
16
5
11
15
3eqtr3a
⊢
N
∈
Fin
∧
R
∈
Ring
→
0
R
freeLMod
N
×
N
=
i
∈
N
,
j
∈
N
⟼
0
˙
17
4
16
eqtr3d
⊢
N
∈
Fin
∧
R
∈
Ring
→
0
A
=
i
∈
N
,
j
∈
N
⟼
0
˙