Metamath Proof Explorer


Theorem mat0op

Description: Value of a zero matrix as operation. (Contributed by AV, 2-Dec-2018)

Ref Expression
Hypotheses mat0op.a A = N Mat R
mat0op.z 0 ˙ = 0 R
Assertion mat0op N Fin R Ring 0 A = i N , j N 0 ˙

Proof

Step Hyp Ref Expression
1 mat0op.a A = N Mat R
2 mat0op.z 0 ˙ = 0 R
3 eqid R freeLMod N × N = R freeLMod N × N
4 1 3 mat0 N Fin R Ring 0 R freeLMod N × N = 0 A
5 fconstmpo N × N × 0 R = i N , j N 0 R
6 simpr N Fin R Ring R Ring
7 sqxpexg N Fin N × N V
8 7 adantr N Fin R Ring N × N V
9 eqid 0 R = 0 R
10 3 9 frlm0 R Ring N × N V N × N × 0 R = 0 R freeLMod N × N
11 6 8 10 syl2anc N Fin R Ring N × N × 0 R = 0 R freeLMod N × N
12 2 eqcomi 0 R = 0 ˙
13 12 a1i i N j N 0 R = 0 ˙
14 13 mpoeq3ia i N , j N 0 R = i N , j N 0 ˙
15 14 a1i N Fin R Ring i N , j N 0 R = i N , j N 0 ˙
16 5 11 15 3eqtr3a N Fin R Ring 0 R freeLMod N × N = i N , j N 0 ˙
17 4 16 eqtr3d N Fin R Ring 0 A = i N , j N 0 ˙