Metamath Proof Explorer


Theorem mat0scmat

Description: The empty matrix over a ring is a scalar matrix (and therefore, by scmatdmat , also a diagonal matrix). (Contributed by AV, 21-Dec-2019)

Ref Expression
Assertion mat0scmat R Ring ScMat R

Proof

Step Hyp Ref Expression
1 0ex V
2 1 snid
3 mat0dimbas0 R Ring Base Mat R =
4 2 3 eleqtrrid R Ring Base Mat R
5 eqid Base R = Base R
6 eqid 1 R = 1 R
7 5 6 ringidcl R Ring 1 R Base R
8 oveq1 c = 1 R c Mat R = 1 R Mat R
9 8 eqeq2d c = 1 R = c Mat R = 1 R Mat R
10 9 adantl R Ring c = 1 R = c Mat R = 1 R Mat R
11 eqid Mat R = Mat R
12 11 mat0dimscm R Ring 1 R Base R 1 R Mat R =
13 7 12 mpdan R Ring 1 R Mat R =
14 13 eqcomd R Ring = 1 R Mat R
15 7 10 14 rspcedvd R Ring c Base R = c Mat R
16 11 mat0dimid R Ring 1 Mat R =
17 16 oveq2d R Ring c Mat R 1 Mat R = c Mat R
18 17 eqeq2d R Ring = c Mat R 1 Mat R = c Mat R
19 18 rexbidv R Ring c Base R = c Mat R 1 Mat R c Base R = c Mat R
20 15 19 mpbird R Ring c Base R = c Mat R 1 Mat R
21 0fin Fin
22 eqid Base Mat R = Base Mat R
23 eqid 1 Mat R = 1 Mat R
24 eqid Mat R = Mat R
25 eqid ScMat R = ScMat R
26 5 11 22 23 24 25 scmatel Fin R Ring ScMat R Base Mat R c Base R = c Mat R 1 Mat R
27 21 26 mpan R Ring ScMat R Base Mat R c Base R = c Mat R 1 Mat R
28 4 20 27 mpbir2and R Ring ScMat R