Metamath Proof Explorer


Theorem mat1

Description: Value of an identity matrix, see also the statement in Lang p. 504: "The unit element of the ring of n x n matrices is the matrix I_n ... whose components are equal to 0 except on the diagonal, in which case they are equal to 1.". (Contributed by Stefan O'Rear, 7-Sep-2015)

Ref Expression
Hypotheses mat1.a A = N Mat R
mat1.o 1 ˙ = 1 R
mat1.z 0 ˙ = 0 R
Assertion mat1 N Fin R Ring 1 A = i N , j N if i = j 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 mat1.a A = N Mat R
2 mat1.o 1 ˙ = 1 R
3 mat1.z 0 ˙ = 0 R
4 eqid Base R = Base R
5 simpr N Fin R Ring R Ring
6 eqid i N , j N if i = j 1 ˙ 0 ˙ = i N , j N if i = j 1 ˙ 0 ˙
7 simpl N Fin R Ring N Fin
8 4 5 2 3 6 7 mamumat1cl N Fin R Ring i N , j N if i = j 1 ˙ 0 ˙ Base R N × N
9 1 4 matbas2 N Fin R Ring Base R N × N = Base A
10 8 9 eleqtrd N Fin R Ring i N , j N if i = j 1 ˙ 0 ˙ Base A
11 eqid R maMul N N N = R maMul N N N
12 1 11 matmulr N Fin R Ring R maMul N N N = A
13 12 adantr N Fin R Ring x Base A R maMul N N N = A
14 13 oveqd N Fin R Ring x Base A i N , j N if i = j 1 ˙ 0 ˙ R maMul N N N x = i N , j N if i = j 1 ˙ 0 ˙ A x
15 simplr N Fin R Ring x Base A R Ring
16 simpll N Fin R Ring x Base A N Fin
17 9 eleq2d N Fin R Ring x Base R N × N x Base A
18 17 biimpar N Fin R Ring x Base A x Base R N × N
19 4 15 2 3 6 16 16 11 18 mamulid N Fin R Ring x Base A i N , j N if i = j 1 ˙ 0 ˙ R maMul N N N x = x
20 14 19 eqtr3d N Fin R Ring x Base A i N , j N if i = j 1 ˙ 0 ˙ A x = x
21 13 oveqd N Fin R Ring x Base A x R maMul N N N i N , j N if i = j 1 ˙ 0 ˙ = x A i N , j N if i = j 1 ˙ 0 ˙
22 4 15 2 3 6 16 16 11 18 mamurid N Fin R Ring x Base A x R maMul N N N i N , j N if i = j 1 ˙ 0 ˙ = x
23 21 22 eqtr3d N Fin R Ring x Base A x A i N , j N if i = j 1 ˙ 0 ˙ = x
24 20 23 jca N Fin R Ring x Base A i N , j N if i = j 1 ˙ 0 ˙ A x = x x A i N , j N if i = j 1 ˙ 0 ˙ = x
25 24 ralrimiva N Fin R Ring x Base A i N , j N if i = j 1 ˙ 0 ˙ A x = x x A i N , j N if i = j 1 ˙ 0 ˙ = x
26 1 matring N Fin R Ring A Ring
27 eqid Base A = Base A
28 eqid A = A
29 eqid 1 A = 1 A
30 27 28 29 isringid A Ring i N , j N if i = j 1 ˙ 0 ˙ Base A x Base A i N , j N if i = j 1 ˙ 0 ˙ A x = x x A i N , j N if i = j 1 ˙ 0 ˙ = x 1 A = i N , j N if i = j 1 ˙ 0 ˙
31 26 30 syl N Fin R Ring i N , j N if i = j 1 ˙ 0 ˙ Base A x Base A i N , j N if i = j 1 ˙ 0 ˙ A x = x x A i N , j N if i = j 1 ˙ 0 ˙ = x 1 A = i N , j N if i = j 1 ˙ 0 ˙
32 10 25 31 mpbi2and N Fin R Ring 1 A = i N , j N if i = j 1 ˙ 0 ˙