Metamath Proof Explorer


Theorem mat1bas

Description: The identity matrix is a matrix. (Contributed by AV, 15-Feb-2019)

Ref Expression
Hypotheses mat1bas.a A = N Mat R
mat1bas.b B = Base A
mat1bas.i 1 ˙ = 1 N Mat R
Assertion mat1bas R Ring N Fin 1 ˙ B

Proof

Step Hyp Ref Expression
1 mat1bas.a A = N Mat R
2 mat1bas.b B = Base A
3 mat1bas.i 1 ˙ = 1 N Mat R
4 eqid N Mat R = N Mat R
5 4 matring N Fin R Ring N Mat R Ring
6 5 ancoms R Ring N Fin N Mat R Ring
7 1 fveq2i Base A = Base N Mat R
8 2 7 eqtri B = Base N Mat R
9 8 3 ringidcl N Mat R Ring 1 ˙ B
10 6 9 syl R Ring N Fin 1 ˙ B