Metamath Proof Explorer


Theorem mat1comp

Description: The components of the identity matrix (as operation in maps-to notation). (Contributed by AV, 22-Jul-2019)

Ref Expression
Hypotheses mamumat1cl.b B = Base R
mamumat1cl.r φ R Ring
mamumat1cl.o 1 ˙ = 1 R
mamumat1cl.z 0 ˙ = 0 R
mamumat1cl.i I = i M , j M if i = j 1 ˙ 0 ˙
mamumat1cl.m φ M Fin
Assertion mat1comp A M J M A I J = if A = J 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 mamumat1cl.b B = Base R
2 mamumat1cl.r φ R Ring
3 mamumat1cl.o 1 ˙ = 1 R
4 mamumat1cl.z 0 ˙ = 0 R
5 mamumat1cl.i I = i M , j M if i = j 1 ˙ 0 ˙
6 mamumat1cl.m φ M Fin
7 eqeq1 i = A i = j A = j
8 7 ifbid i = A if i = j 1 ˙ 0 ˙ = if A = j 1 ˙ 0 ˙
9 eqeq2 j = J A = j A = J
10 9 ifbid j = J if A = j 1 ˙ 0 ˙ = if A = J 1 ˙ 0 ˙
11 3 fvexi 1 ˙ V
12 4 fvexi 0 ˙ V
13 11 12 ifex if A = J 1 ˙ 0 ˙ V
14 8 10 5 13 ovmpo A M J M A I J = if A = J 1 ˙ 0 ˙