Metamath Proof Explorer


Theorem mat1dim0

Description: The zero of the algebra of matrices with dimension 1. (Contributed by AV, 15-Aug-2019)

Ref Expression
Hypotheses mat1dim.a A = E Mat R
mat1dim.b B = Base R
mat1dim.o O = E E
Assertion mat1dim0 R Ring E V 0 A = O 0 R

Proof

Step Hyp Ref Expression
1 mat1dim.a A = E Mat R
2 mat1dim.b B = Base R
3 mat1dim.o O = E E
4 snfi E Fin
5 4 a1i E V E Fin
6 5 anim2i R Ring E V R Ring E Fin
7 6 ancomd R Ring E V E Fin R Ring
8 eqid 0 R = 0 R
9 1 8 mat0op E Fin R Ring 0 A = x E , y E 0 R
10 7 9 syl R Ring E V 0 A = x E , y E 0 R
11 simpr R Ring E V E V
12 fvexd R Ring E V 0 R V
13 eqid x E , y E 0 R = x E , y E 0 R
14 eqidd x = E 0 R = 0 R
15 eqidd y = E 0 R = 0 R
16 13 14 15 mposn E V E V 0 R V x E , y E 0 R = E E 0 R
17 3 eqcomi E E = O
18 17 opeq1i E E 0 R = O 0 R
19 18 sneqi E E 0 R = O 0 R
20 16 19 eqtrdi E V E V 0 R V x E , y E 0 R = O 0 R
21 11 11 12 20 syl3anc R Ring E V x E , y E 0 R = O 0 R
22 10 21 eqtrd R Ring E V 0 A = O 0 R