Metamath Proof Explorer


Theorem mat1dimbas

Description: A matrix with dimension 1 is an ordered pair with an ordered pair (of the one and only pair of indices) as first component. (Contributed by AV, 15-Aug-2019)

Ref Expression
Hypotheses mat1dim.a A = E Mat R
mat1dim.b B = Base R
mat1dim.o O = E E
Assertion mat1dimbas R Ring E V X B O X Base A

Proof

Step Hyp Ref Expression
1 mat1dim.a A = E Mat R
2 mat1dim.b B = Base R
3 mat1dim.o O = E E
4 risset X B r B r = X
5 eqcom X = r r = X
6 5 rexbii r B X = r r B r = X
7 4 6 sylbb2 X B r B X = r
8 7 3ad2ant3 R Ring E V X B r B X = r
9 opex E E V
10 3 9 eqeltri O V
11 simp3 R Ring E V X B X B
12 opthg O V X B O X = O r O = O X = r
13 10 11 12 sylancr R Ring E V X B O X = O r O = O X = r
14 opex O X V
15 sneqbg O X V O X = O r O X = O r
16 14 15 ax-mp O X = O r O X = O r
17 eqid O = O
18 17 biantrur X = r O = O X = r
19 13 16 18 3bitr4g R Ring E V X B O X = O r X = r
20 19 rexbidv R Ring E V X B r B O X = O r r B X = r
21 8 20 mpbird R Ring E V X B r B O X = O r
22 1 2 3 mat1dimelbas R Ring E V O X Base A r B O X = O r
23 22 3adant3 R Ring E V X B O X Base A r B O X = O r
24 21 23 mpbird R Ring E V X B O X Base A