Step |
Hyp |
Ref |
Expression |
1 |
|
mat1dim.a |
|
2 |
|
mat1dim.b |
|
3 |
|
mat1dim.o |
|
4 |
|
snfi |
|
5 |
|
crngring |
|
6 |
5
|
adantr |
|
7 |
1
|
matring |
|
8 |
4 6 7
|
sylancr |
|
9 |
1 2 3
|
mat1dimelbas |
|
10 |
1 2 3
|
mat1dimelbas |
|
11 |
9 10
|
anbi12d |
|
12 |
5 11
|
sylan |
|
13 |
|
simpll |
|
14 |
|
simprl |
|
15 |
|
simprr |
|
16 |
|
eqid |
|
17 |
2 16
|
crngcom |
|
18 |
13 14 15 17
|
syl3anc |
|
19 |
18
|
opeq2d |
|
20 |
19
|
sneqd |
|
21 |
5
|
anim1i |
|
22 |
1 2 3
|
mat1dimmul |
|
23 |
21 22
|
sylan |
|
24 |
|
pm3.22 |
|
25 |
1 2 3
|
mat1dimmul |
|
26 |
21 24 25
|
syl2an |
|
27 |
20 23 26
|
3eqtr4d |
|
28 |
27
|
expr |
|
29 |
28
|
adantr |
|
30 |
29
|
imp |
|
31 |
30
|
adantr |
|
32 |
|
oveq12 |
|
33 |
32
|
ad4ant24 |
|
34 |
|
oveq12 |
|
35 |
34
|
expcom |
|
36 |
35
|
ad2antlr |
|
37 |
36
|
imp |
|
38 |
31 33 37
|
3eqtr4d |
|
39 |
38
|
rexlimdva2 |
|
40 |
39
|
rexlimdva2 |
|
41 |
40
|
impd |
|
42 |
12 41
|
sylbid |
|
43 |
42
|
ralrimivv |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
44 45
|
iscrng2 |
|
47 |
8 43 46
|
sylanbrc |
|