Metamath Proof Explorer


Theorem mat1dimcrng

Description: The algebra of matrices with dimension 1 over a commutative ring is a commutative ring. (Contributed by AV, 16-Aug-2019)

Ref Expression
Hypotheses mat1dim.a A = E Mat R
mat1dim.b B = Base R
mat1dim.o O = E E
Assertion mat1dimcrng R CRing E V A CRing

Proof

Step Hyp Ref Expression
1 mat1dim.a A = E Mat R
2 mat1dim.b B = Base R
3 mat1dim.o O = E E
4 snfi E Fin
5 crngring R CRing R Ring
6 5 adantr R CRing E V R Ring
7 1 matring E Fin R Ring A Ring
8 4 6 7 sylancr R CRing E V A Ring
9 1 2 3 mat1dimelbas R Ring E V x Base A a B x = O a
10 1 2 3 mat1dimelbas R Ring E V y Base A b B y = O b
11 9 10 anbi12d R Ring E V x Base A y Base A a B x = O a b B y = O b
12 5 11 sylan R CRing E V x Base A y Base A a B x = O a b B y = O b
13 simpll R CRing E V a B b B R CRing
14 simprl R CRing E V a B b B a B
15 simprr R CRing E V a B b B b B
16 eqid R = R
17 2 16 crngcom R CRing a B b B a R b = b R a
18 13 14 15 17 syl3anc R CRing E V a B b B a R b = b R a
19 18 opeq2d R CRing E V a B b B O a R b = O b R a
20 19 sneqd R CRing E V a B b B O a R b = O b R a
21 5 anim1i R CRing E V R Ring E V
22 1 2 3 mat1dimmul R Ring E V a B b B O a A O b = O a R b
23 21 22 sylan R CRing E V a B b B O a A O b = O a R b
24 pm3.22 a B b B b B a B
25 1 2 3 mat1dimmul R Ring E V b B a B O b A O a = O b R a
26 21 24 25 syl2an R CRing E V a B b B O b A O a = O b R a
27 20 23 26 3eqtr4d R CRing E V a B b B O a A O b = O b A O a
28 27 expr R CRing E V a B b B O a A O b = O b A O a
29 28 adantr R CRing E V a B x = O a b B O a A O b = O b A O a
30 29 imp R CRing E V a B x = O a b B O a A O b = O b A O a
31 30 adantr R CRing E V a B x = O a b B y = O b O a A O b = O b A O a
32 oveq12 x = O a y = O b x A y = O a A O b
33 32 ad4ant24 R CRing E V a B x = O a b B y = O b x A y = O a A O b
34 oveq12 y = O b x = O a y A x = O b A O a
35 34 expcom x = O a y = O b y A x = O b A O a
36 35 ad2antlr R CRing E V a B x = O a b B y = O b y A x = O b A O a
37 36 imp R CRing E V a B x = O a b B y = O b y A x = O b A O a
38 31 33 37 3eqtr4d R CRing E V a B x = O a b B y = O b x A y = y A x
39 38 rexlimdva2 R CRing E V a B x = O a b B y = O b x A y = y A x
40 39 rexlimdva2 R CRing E V a B x = O a b B y = O b x A y = y A x
41 40 impd R CRing E V a B x = O a b B y = O b x A y = y A x
42 12 41 sylbid R CRing E V x Base A y Base A x A y = y A x
43 42 ralrimivv R CRing E V x Base A y Base A x A y = y A x
44 eqid Base A = Base A
45 eqid A = A
46 44 45 iscrng2 A CRing A Ring x Base A y Base A x A y = y A x
47 8 43 46 sylanbrc R CRing E V A CRing