Step |
Hyp |
Ref |
Expression |
1 |
|
mat1dim.a |
|
2 |
|
mat1dim.b |
|
3 |
|
mat1dim.o |
|
4 |
|
opex |
|
5 |
3 4
|
eqeltri |
|
6 |
5
|
a1i |
|
7 |
6
|
anim2i |
|
8 |
7
|
ancomd |
|
9 |
|
fnsng |
|
10 |
8 9
|
syl |
|
11 |
10
|
adantl |
|
12 |
|
xpsng |
|
13 |
8 12
|
syl |
|
14 |
13
|
adantl |
|
15 |
14
|
fneq1d |
|
16 |
11 15
|
mpbird |
|
17 |
|
xpsng |
|
18 |
3
|
sneqi |
|
19 |
17 18
|
eqtr4di |
|
20 |
19
|
anidms |
|
21 |
20
|
ad2antlr |
|
22 |
21
|
xpeq1d |
|
23 |
22
|
fneq1d |
|
24 |
16 23
|
mpbird |
|
25 |
5
|
a1i |
|
26 |
|
fnsng |
|
27 |
25 26
|
sylan |
|
28 |
27
|
adantl |
|
29 |
|
snex |
|
30 |
29
|
a1i |
|
31 |
|
inidm |
|
32 |
|
elsni |
|
33 |
|
fveq2 |
|
34 |
17
|
anidms |
|
35 |
34
|
ad2antlr |
|
36 |
35
|
xpeq1d |
|
37 |
4
|
a1i |
|
38 |
37
|
anim2i |
|
39 |
38
|
ancomd |
|
40 |
|
xpsng |
|
41 |
3
|
eqcomi |
|
42 |
41
|
opeq1i |
|
43 |
42
|
sneqi |
|
44 |
40 43
|
eqtrdi |
|
45 |
39 44
|
syl |
|
46 |
45
|
adantl |
|
47 |
36 46
|
eqtrd |
|
48 |
47
|
fveq1d |
|
49 |
|
fvsng |
|
50 |
8 49
|
syl |
|
51 |
50
|
adantl |
|
52 |
48 51
|
eqtrd |
|
53 |
33 52
|
sylan9eq |
|
54 |
53
|
ex |
|
55 |
32 54
|
syl |
|
56 |
55
|
impcom |
|
57 |
|
fveq2 |
|
58 |
|
fvsng |
|
59 |
25 58
|
sylan |
|
60 |
59
|
adantl |
|
61 |
57 60
|
sylan9eq |
|
62 |
61
|
ex |
|
63 |
32 62
|
syl |
|
64 |
63
|
impcom |
|
65 |
24 28 30 30 31 56 64
|
offval |
|
66 |
|
simprl |
|
67 |
|
simpr |
|
68 |
67
|
anim2i |
|
69 |
|
df-3an |
|
70 |
68 69
|
sylibr |
|
71 |
1 2 3
|
mat1dimbas |
|
72 |
70 71
|
syl |
|
73 |
|
eqid |
|
74 |
|
eqid |
|
75 |
|
eqid |
|
76 |
|
eqid |
|
77 |
1 73 2 74 75 76
|
matvsca2 |
|
78 |
66 72 77
|
syl2anc |
|
79 |
|
3anass |
|
80 |
79
|
biimpri |
|
81 |
80
|
adantlr |
|
82 |
2 75
|
ringcl |
|
83 |
81 82
|
syl |
|
84 |
|
fmptsn |
|
85 |
5 83 84
|
sylancr |
|
86 |
65 78 85
|
3eqtr4d |
|