Metamath Proof Explorer


Theorem mat1f

Description: There is a function from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K = Base R
mat1rhmval.a A = E Mat R
mat1rhmval.b B = Base A
mat1rhmval.o O = E E
mat1rhmval.f F = x K O x
Assertion mat1f R Ring E V F : K B

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K = Base R
2 mat1rhmval.a A = E Mat R
3 mat1rhmval.b B = Base A
4 mat1rhmval.o O = E E
5 mat1rhmval.f F = x K O x
6 1 2 3 4 5 mat1f1o R Ring E V F : K 1-1 onto B
7 f1of F : K 1-1 onto B F : K B
8 6 7 syl R Ring E V F : K B