Metamath Proof Explorer


Theorem mat1f1o

Description: There is a 1-1 function from a ring onto the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K = Base R
mat1rhmval.a A = E Mat R
mat1rhmval.b B = Base A
mat1rhmval.o O = E E
mat1rhmval.f F = x K O x
Assertion mat1f1o R Ring E V F : K 1-1 onto B

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K = Base R
2 mat1rhmval.a A = E Mat R
3 mat1rhmval.b B = Base A
4 mat1rhmval.o O = E E
5 mat1rhmval.f F = x K O x
6 1 fvexi K V
7 opex E E V
8 4 7 eqeltri O V
9 6 8 pm3.2i K V O V
10 vex x V
11 8 10 xpsn O × x = O x
12 11 eqcomi O x = O × x
13 12 mpteq2i x K O x = x K O × x
14 13 mapsnf1o K V O V x K O x : K 1-1 onto K O
15 9 14 mp1i R Ring E V x K O x : K 1-1 onto K O
16 5 a1i R Ring E V F = x K O x
17 eqidd R Ring E V K = K
18 4 sneqi O = E E
19 simpr R Ring E V E V
20 xpsng E V E V E × E = E E
21 19 20 sylancom R Ring E V E × E = E E
22 18 21 eqtr4id R Ring E V O = E × E
23 22 oveq2d R Ring E V K O = K E × E
24 snfi E Fin
25 simpl R Ring E V R Ring
26 2 1 matbas2 E Fin R Ring K E × E = Base A
27 24 25 26 sylancr R Ring E V K E × E = Base A
28 23 27 eqtrd R Ring E V K O = Base A
29 3 28 eqtr4id R Ring E V B = K O
30 16 17 29 f1oeq123d R Ring E V F : K 1-1 onto B x K O x : K 1-1 onto K O
31 15 30 mpbird R Ring E V F : K 1-1 onto B