| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mat1rhmval.k |
|
| 2 |
|
mat1rhmval.a |
|
| 3 |
|
mat1rhmval.b |
|
| 4 |
|
mat1rhmval.o |
|
| 5 |
|
mat1rhmval.f |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
ringgrp |
|
| 9 |
8
|
adantr |
|
| 10 |
|
snfi |
|
| 11 |
|
simpl |
|
| 12 |
2
|
matgrp |
|
| 13 |
10 11 12
|
sylancr |
|
| 14 |
1 2 3 4 5
|
mat1f |
|
| 15 |
11
|
adantr |
|
| 16 |
|
simpr |
|
| 17 |
16
|
adantr |
|
| 18 |
|
simpl |
|
| 19 |
18
|
adantl |
|
| 20 |
1 2 3 4 5
|
mat1rhmelval |
|
| 21 |
15 17 19 20
|
syl3anc |
|
| 22 |
|
simpr |
|
| 23 |
22
|
adantl |
|
| 24 |
1 2 3 4 5
|
mat1rhmelval |
|
| 25 |
15 17 23 24
|
syl3anc |
|
| 26 |
21 25
|
oveq12d |
|
| 27 |
1 2 3 4 5
|
mat1rhmcl |
|
| 28 |
15 17 19 27
|
syl3anc |
|
| 29 |
1 2 3 4 5
|
mat1rhmcl |
|
| 30 |
15 17 23 29
|
syl3anc |
|
| 31 |
|
snidg |
|
| 32 |
31 31
|
jca |
|
| 33 |
32
|
adantl |
|
| 34 |
33
|
adantr |
|
| 35 |
2 3 7 6
|
matplusgcell |
|
| 36 |
28 30 34 35
|
syl21anc |
|
| 37 |
1 6
|
ringacl |
|
| 38 |
15 19 23 37
|
syl3anc |
|
| 39 |
1 2 3 4 5
|
mat1rhmelval |
|
| 40 |
15 17 38 39
|
syl3anc |
|
| 41 |
26 36 40
|
3eqtr4rd |
|
| 42 |
|
oveq1 |
|
| 43 |
|
oveq1 |
|
| 44 |
42 43
|
eqeq12d |
|
| 45 |
|
oveq2 |
|
| 46 |
|
oveq2 |
|
| 47 |
45 46
|
eqeq12d |
|
| 48 |
44 47
|
2ralsng |
|
| 49 |
16 16 48
|
syl2anc |
|
| 50 |
49
|
adantr |
|
| 51 |
41 50
|
mpbird |
|
| 52 |
1 2 3 4 5
|
mat1rhmcl |
|
| 53 |
15 17 38 52
|
syl3anc |
|
| 54 |
2
|
matring |
|
| 55 |
10 11 54
|
sylancr |
|
| 56 |
55
|
adantr |
|
| 57 |
3 7
|
ringacl |
|
| 58 |
56 28 30 57
|
syl3anc |
|
| 59 |
2 3
|
eqmat |
|
| 60 |
53 58 59
|
syl2anc |
|
| 61 |
51 60
|
mpbird |
|
| 62 |
1 3 6 7 9 13 14 61
|
isghmd |
|