Step |
Hyp |
Ref |
Expression |
1 |
|
mat1rhmval.k |
|
2 |
|
mat1rhmval.a |
|
3 |
|
mat1rhmval.b |
|
4 |
|
mat1rhmval.o |
|
5 |
|
mat1rhmval.f |
|
6 |
|
mat1mhm.m |
|
7 |
|
mat1mhm.n |
|
8 |
6
|
ringmgp |
|
9 |
8
|
adantr |
|
10 |
|
snfi |
|
11 |
|
simpl |
|
12 |
2
|
matring |
|
13 |
10 11 12
|
sylancr |
|
14 |
7
|
ringmgp |
|
15 |
13 14
|
syl |
|
16 |
1 2 3 4 5
|
mat1f |
|
17 |
|
ringmnd |
|
18 |
17
|
adantr |
|
19 |
18
|
adantr |
|
20 |
|
simpr |
|
21 |
20
|
adantr |
|
22 |
|
simpll |
|
23 |
|
eqid |
|
24 |
|
snidg |
|
25 |
24
|
ad2antlr |
|
26 |
|
simprl |
|
27 |
1 2 23 4 5
|
mat1rhmcl |
|
28 |
22 21 26 27
|
syl3anc |
|
29 |
2 1 23 25 25 28
|
matecld |
|
30 |
|
simprr |
|
31 |
1 2 23 4 5
|
mat1rhmcl |
|
32 |
22 21 30 31
|
syl3anc |
|
33 |
2 1 23 25 25 32
|
matecld |
|
34 |
|
eqid |
|
35 |
1 34
|
ringcl |
|
36 |
22 29 33 35
|
syl3anc |
|
37 |
|
oveq2 |
|
38 |
|
oveq1 |
|
39 |
37 38
|
oveq12d |
|
40 |
39
|
adantl |
|
41 |
1 19 21 36 40
|
gsumsnd |
|
42 |
1 2 3 4 5
|
mat1rhmelval |
|
43 |
22 21 26 42
|
syl3anc |
|
44 |
1 2 3 4 5
|
mat1rhmelval |
|
45 |
22 21 30 44
|
syl3anc |
|
46 |
43 45
|
oveq12d |
|
47 |
41 46
|
eqtrd |
|
48 |
1 2 3 4 5
|
mat1rhmcl |
|
49 |
22 21 26 48
|
syl3anc |
|
50 |
1 2 3 4 5
|
mat1rhmcl |
|
51 |
22 21 30 50
|
syl3anc |
|
52 |
49 51
|
jca |
|
53 |
24 24
|
jca |
|
54 |
53
|
ad2antlr |
|
55 |
|
eqid |
|
56 |
2 3 55
|
matmulcell |
|
57 |
22 52 54 56
|
syl3anc |
|
58 |
1 34
|
ringcl |
|
59 |
22 26 30 58
|
syl3anc |
|
60 |
1 2 3 4 5
|
mat1rhmelval |
|
61 |
22 21 59 60
|
syl3anc |
|
62 |
47 57 61
|
3eqtr4rd |
|
63 |
|
oveq1 |
|
64 |
|
oveq1 |
|
65 |
63 64
|
eqeq12d |
|
66 |
|
oveq2 |
|
67 |
|
oveq2 |
|
68 |
66 67
|
eqeq12d |
|
69 |
65 68
|
2ralsng |
|
70 |
20 69
|
sylancom |
|
71 |
70
|
adantr |
|
72 |
62 71
|
mpbird |
|
73 |
1 2 3 4 5
|
mat1rhmcl |
|
74 |
22 21 59 73
|
syl3anc |
|
75 |
13
|
adantr |
|
76 |
3 55
|
ringcl |
|
77 |
75 49 51 76
|
syl3anc |
|
78 |
2 3
|
eqmat |
|
79 |
74 77 78
|
syl2anc |
|
80 |
72 79
|
mpbird |
|
81 |
80
|
ralrimivva |
|
82 |
|
eqid |
|
83 |
1 82
|
ringidcl |
|
84 |
83
|
adantr |
|
85 |
1 2 3 4 5
|
mat1rhmval |
|
86 |
84 85
|
mpd3an3 |
|
87 |
2 1 4
|
mat1dimid |
|
88 |
86 87
|
eqtr4d |
|
89 |
16 81 88
|
3jca |
|
90 |
6 1
|
mgpbas |
|
91 |
7 3
|
mgpbas |
|
92 |
6 34
|
mgpplusg |
|
93 |
7 55
|
mgpplusg |
|
94 |
6 82
|
ringidval |
|
95 |
|
eqid |
|
96 |
7 95
|
ringidval |
|
97 |
90 91 92 93 94 96
|
ismhm |
|
98 |
9 15 89 97
|
syl21anbrc |
|