Metamath Proof Explorer


Theorem mat1ov

Description: Entries of an identity matrix, deduction form. (Contributed by Stefan O'Rear, 10-Jul-2018)

Ref Expression
Hypotheses mat1.a A = N Mat R
mat1.o 1 ˙ = 1 R
mat1.z 0 ˙ = 0 R
mat1ov.n φ N Fin
mat1ov.r φ R Ring
mat1ov.i φ I N
mat1ov.j φ J N
mat1ov.u U = 1 A
Assertion mat1ov φ I U J = if I = J 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 mat1.a A = N Mat R
2 mat1.o 1 ˙ = 1 R
3 mat1.z 0 ˙ = 0 R
4 mat1ov.n φ N Fin
5 mat1ov.r φ R Ring
6 mat1ov.i φ I N
7 mat1ov.j φ J N
8 mat1ov.u U = 1 A
9 1 2 3 mat1 N Fin R Ring 1 A = i N , j N if i = j 1 ˙ 0 ˙
10 4 5 9 syl2anc φ 1 A = i N , j N if i = j 1 ˙ 0 ˙
11 8 10 syl5eq φ U = i N , j N if i = j 1 ˙ 0 ˙
12 eqeq12 i = I j = J i = j I = J
13 12 ifbid i = I j = J if i = j 1 ˙ 0 ˙ = if I = J 1 ˙ 0 ˙
14 13 adantl φ i = I j = J if i = j 1 ˙ 0 ˙ = if I = J 1 ˙ 0 ˙
15 2 fvexi 1 ˙ V
16 3 fvexi 0 ˙ V
17 15 16 ifex if I = J 1 ˙ 0 ˙ V
18 17 a1i φ if I = J 1 ˙ 0 ˙ V
19 11 14 6 7 18 ovmpod φ I U J = if I = J 1 ˙ 0 ˙