Metamath Proof Explorer


Theorem mat1rhm

Description: There is a ring homomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K = Base R
mat1rhmval.a A = E Mat R
mat1rhmval.b B = Base A
mat1rhmval.o O = E E
mat1rhmval.f F = x K O x
Assertion mat1rhm R Ring E V F R RingHom A

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K = Base R
2 mat1rhmval.a A = E Mat R
3 mat1rhmval.b B = Base A
4 mat1rhmval.o O = E E
5 mat1rhmval.f F = x K O x
6 simpl R Ring E V R Ring
7 snfi E Fin
8 2 matring E Fin R Ring A Ring
9 7 6 8 sylancr R Ring E V A Ring
10 1 2 3 4 5 mat1ghm R Ring E V F R GrpHom A
11 eqid mulGrp R = mulGrp R
12 eqid mulGrp A = mulGrp A
13 1 2 3 4 5 11 12 mat1mhm R Ring E V F mulGrp R MndHom mulGrp A
14 10 13 jca R Ring E V F R GrpHom A F mulGrp R MndHom mulGrp A
15 11 12 isrhm F R RingHom A R Ring A Ring F R GrpHom A F mulGrp R MndHom mulGrp A
16 6 9 14 15 syl21anbrc R Ring E V F R RingHom A