Metamath Proof Explorer


Theorem mat1rhmcl

Description: The value of the ring homomorphism F is a matrix with dimension 1. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K = Base R
mat1rhmval.a A = E Mat R
mat1rhmval.b B = Base A
mat1rhmval.o O = E E
mat1rhmval.f F = x K O x
Assertion mat1rhmcl R Ring E V X K F X B

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K = Base R
2 mat1rhmval.a A = E Mat R
3 mat1rhmval.b B = Base A
4 mat1rhmval.o O = E E
5 mat1rhmval.f F = x K O x
6 2 1 4 mat1dimbas R Ring E V X K O X Base A
7 1 2 3 4 5 mat1rhmval R Ring E V X K F X = O X
8 3 a1i R Ring E V X K B = Base A
9 6 7 8 3eltr4d R Ring E V X K F X B