Metamath Proof Explorer


Theorem mat1rhmcl

Description: The value of the ring homomorphism F is a matrix with dimension 1. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K=BaseR
mat1rhmval.a A=EMatR
mat1rhmval.b B=BaseA
mat1rhmval.o O=EE
mat1rhmval.f F=xKOx
Assertion mat1rhmcl RRingEVXKFXB

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K=BaseR
2 mat1rhmval.a A=EMatR
3 mat1rhmval.b B=BaseA
4 mat1rhmval.o O=EE
5 mat1rhmval.f F=xKOx
6 2 1 4 mat1dimbas RRingEVXKOXBaseA
7 1 2 3 4 5 mat1rhmval RRingEVXKFX=OX
8 3 a1i RRingEVXKB=BaseA
9 6 7 8 3eltr4d RRingEVXKFXB