Metamath Proof Explorer


Theorem mat1rhmelval

Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K = Base R
mat1rhmval.a A = E Mat R
mat1rhmval.b B = Base A
mat1rhmval.o O = E E
mat1rhmval.f F = x K O x
Assertion mat1rhmelval R Ring E V X K E F X E = X

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K = Base R
2 mat1rhmval.a A = E Mat R
3 mat1rhmval.b B = Base A
4 mat1rhmval.o O = E E
5 mat1rhmval.f F = x K O x
6 df-ov E F X E = F X E E
7 1 2 3 4 5 mat1rhmval R Ring E V X K F X = O X
8 7 fveq1d R Ring E V X K F X E E = O X E E
9 4 eqcomi E E = O
10 9 fveq2i O X E E = O X O
11 opex E E V
12 4 11 eqeltri O V
13 simp3 R Ring E V X K X K
14 fvsng O V X K O X O = X
15 12 13 14 sylancr R Ring E V X K O X O = X
16 10 15 syl5eq R Ring E V X K O X E E = X
17 8 16 eqtrd R Ring E V X K F X E E = X
18 6 17 syl5eq R Ring E V X K E F X E = X