Metamath Proof Explorer


Theorem mat1rhmval

Description: The value of the ring homomorphism F . (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K = Base R
mat1rhmval.a A = E Mat R
mat1rhmval.b B = Base A
mat1rhmval.o O = E E
mat1rhmval.f F = x K O x
Assertion mat1rhmval R Ring E V X K F X = O X

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K = Base R
2 mat1rhmval.a A = E Mat R
3 mat1rhmval.b B = Base A
4 mat1rhmval.o O = E E
5 mat1rhmval.f F = x K O x
6 opeq2 x = X O x = O X
7 6 sneqd x = X O x = O X
8 simp3 R Ring E V X K X K
9 snex O X V
10 9 a1i R Ring E V X K O X V
11 5 7 8 10 fvmptd3 R Ring E V X K F X = O X