Metamath Proof Explorer


Theorem mat1ric

Description: A ring is isomorphic to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 30-Dec-2019)

Ref Expression
Hypothesis mat1ric.a A=EMatR
Assertion mat1ric RRingEVR𝑟A

Proof

Step Hyp Ref Expression
1 mat1ric.a A=EMatR
2 eqid BaseR=BaseR
3 eqid BaseA=BaseA
4 eqid EE=EE
5 opeq2 x=yEEx=EEy
6 5 sneqd x=yEEx=EEy
7 6 cbvmptv xBaseREEx=yBaseREEy
8 2 1 3 4 7 mat1rngiso RRingEVxBaseREExRRingIsoA
9 8 ne0d RRingEVRRingIsoA
10 brric R𝑟ARRingIsoA
11 9 10 sylibr RRingEVR𝑟A