Metamath Proof Explorer


Theorem mat1ric

Description: A ring is isomorphic to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 30-Dec-2019)

Ref Expression
Hypothesis mat1ric.a A = E Mat R
Assertion mat1ric R Ring E V R 𝑟 A

Proof

Step Hyp Ref Expression
1 mat1ric.a A = E Mat R
2 eqid Base R = Base R
3 eqid Base A = Base A
4 eqid E E = E E
5 opeq2 x = y E E x = E E y
6 5 sneqd x = y E E x = E E y
7 6 cbvmptv x Base R E E x = y Base R E E y
8 2 1 3 4 7 mat1rngiso R Ring E V x Base R E E x R RingIso A
9 8 ne0d R Ring E V R RingIso A
10 brric R 𝑟 A R RingIso A
11 9 10 sylibr R Ring E V R 𝑟 A