Metamath Proof Explorer


Theorem mat1rngiso

Description: There is a ring isomorphism from a ring to the ring of matrices with dimension 1 over this ring. (Contributed by AV, 22-Dec-2019)

Ref Expression
Hypotheses mat1rhmval.k K = Base R
mat1rhmval.a A = E Mat R
mat1rhmval.b B = Base A
mat1rhmval.o O = E E
mat1rhmval.f F = x K O x
Assertion mat1rngiso R Ring E V F R RingIso A

Proof

Step Hyp Ref Expression
1 mat1rhmval.k K = Base R
2 mat1rhmval.a A = E Mat R
3 mat1rhmval.b B = Base A
4 mat1rhmval.o O = E E
5 mat1rhmval.f F = x K O x
6 1 2 3 4 5 mat1rhm R Ring E V F R RingHom A
7 1 2 3 4 5 mat1f1o R Ring E V F : K 1-1 onto B
8 snfi E Fin
9 simpl R Ring E V R Ring
10 2 matring E Fin R Ring A Ring
11 8 9 10 sylancr R Ring E V A Ring
12 1 3 isrim R Ring A Ring F R RingIso A F R RingHom A F : K 1-1 onto B
13 11 12 syldan R Ring E V F R RingIso A F R RingHom A F : K 1-1 onto B
14 6 7 13 mpbir2and R Ring E V F R RingIso A