Metamath Proof Explorer


Theorem mat2pmatbas0

Description: The result of a matrix transformation is a polynomial matrix. (Contributed by AV, 27-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t T = N matToPolyMat R
mat2pmatbas.a A = N Mat R
mat2pmatbas.b B = Base A
mat2pmatbas.p P = Poly 1 R
mat2pmatbas.c C = N Mat P
mat2pmatbas0.h H = Base C
Assertion mat2pmatbas0 N Fin R Ring M B T M H

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T = N matToPolyMat R
2 mat2pmatbas.a A = N Mat R
3 mat2pmatbas.b B = Base A
4 mat2pmatbas.p P = Poly 1 R
5 mat2pmatbas.c C = N Mat P
6 mat2pmatbas0.h H = Base C
7 1 2 3 4 5 mat2pmatbas N Fin R Ring M B T M Base C
8 7 6 eleqtrrdi N Fin R Ring M B T M H