Metamath Proof Explorer


Theorem mat2pmatf

Description: The matrix transformation is a function from the matrices to the polynomial matrices. (Contributed by AV, 27-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t T = N matToPolyMat R
mat2pmatbas.a A = N Mat R
mat2pmatbas.b B = Base A
mat2pmatbas.p P = Poly 1 R
mat2pmatbas.c C = N Mat P
mat2pmatbas0.h H = Base C
Assertion mat2pmatf N Fin R Ring T : B H

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T = N matToPolyMat R
2 mat2pmatbas.a A = N Mat R
3 mat2pmatbas.b B = Base A
4 mat2pmatbas.p P = Poly 1 R
5 mat2pmatbas.c C = N Mat P
6 mat2pmatbas0.h H = Base C
7 simpl N Fin R Ring N Fin
8 7 7 jca N Fin R Ring N Fin N Fin
9 8 adantr N Fin R Ring m B N Fin N Fin
10 mpoexga N Fin N Fin x N , y N algSc P x m y V
11 9 10 syl N Fin R Ring m B x N , y N algSc P x m y V
12 eqid algSc P = algSc P
13 1 2 3 4 12 mat2pmatfval N Fin R Ring T = m B x N , y N algSc P x m y
14 1 2 3 4 5 6 mat2pmatbas0 N Fin R Ring m B T m H
15 14 3expa N Fin R Ring m B T m H
16 11 13 15 fmpt2d N Fin R Ring T : B H