Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatbas.t |
|
2 |
|
mat2pmatbas.a |
|
3 |
|
mat2pmatbas.b |
|
4 |
|
mat2pmatbas.p |
|
5 |
|
mat2pmatbas.c |
|
6 |
|
mat2pmatbas0.h |
|
7 |
1 2 3 4 5 6
|
mat2pmatf |
|
8 |
|
simpl |
|
9 |
8
|
anim2i |
|
10 |
|
df-3an |
|
11 |
9 10
|
sylibr |
|
12 |
|
eqid |
|
13 |
1 2 3 4 12
|
mat2pmatvalel |
|
14 |
11 13
|
sylan |
|
15 |
|
simpr |
|
16 |
15
|
anim2i |
|
17 |
|
df-3an |
|
18 |
16 17
|
sylibr |
|
19 |
1 2 3 4 12
|
mat2pmatvalel |
|
20 |
18 19
|
sylan |
|
21 |
14 20
|
eqeq12d |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
4 12 22 23
|
ply1sclf1 |
|
25 |
24
|
ad3antlr |
|
26 |
|
simprl |
|
27 |
|
simprr |
|
28 |
|
simplrl |
|
29 |
2 22 3 26 27 28
|
matecld |
|
30 |
|
simplrr |
|
31 |
2 22 3 26 27 30
|
matecld |
|
32 |
|
f1veqaeq |
|
33 |
25 29 31 32
|
syl12anc |
|
34 |
21 33
|
sylbid |
|
35 |
34
|
ralimdvva |
|
36 |
1 2 3 4 5 6
|
mat2pmatbas0 |
|
37 |
11 36
|
syl |
|
38 |
1 2 3 4 5 6
|
mat2pmatbas0 |
|
39 |
18 38
|
syl |
|
40 |
5 6
|
eqmat |
|
41 |
37 39 40
|
syl2anc |
|
42 |
2 3
|
eqmat |
|
43 |
42
|
adantl |
|
44 |
35 41 43
|
3imtr4d |
|
45 |
44
|
ralrimivva |
|
46 |
|
dff13 |
|
47 |
7 45 46
|
sylanbrc |
|