Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatbas.t |
|
2 |
|
mat2pmatbas.a |
|
3 |
|
mat2pmatbas.b |
|
4 |
|
mat2pmatbas.p |
|
5 |
|
mat2pmatbas.c |
|
6 |
|
mat2pmatbas0.h |
|
7 |
|
mat2pmatlin.k |
|
8 |
|
mat2pmatlin.s |
|
9 |
|
mat2pmatlin.m |
|
10 |
|
mat2pmatlin.n |
|
11 |
|
simpr |
|
12 |
4
|
ply1assa |
|
13 |
|
eqid |
|
14 |
8 13
|
asclrhm |
|
15 |
11 12 14
|
3syl |
|
16 |
4
|
ply1sca |
|
17 |
16
|
adantl |
|
18 |
17
|
oveq1d |
|
19 |
15 18
|
eleqtrrd |
|
20 |
19
|
adantr |
|
21 |
20
|
adantr |
|
22 |
7
|
eleq2i |
|
23 |
22
|
biimpi |
|
24 |
23
|
adantr |
|
25 |
24
|
ad2antlr |
|
26 |
|
eqid |
|
27 |
|
simprl |
|
28 |
|
simpr |
|
29 |
28
|
adantl |
|
30 |
|
simplrr |
|
31 |
2 26 3 27 29 30
|
matecld |
|
32 |
|
eqid |
|
33 |
|
eqid |
|
34 |
26 32 33
|
rhmmul |
|
35 |
21 25 31 34
|
syl3anc |
|
36 |
|
crngring |
|
37 |
36
|
ad2antlr |
|
38 |
37
|
adantr |
|
39 |
|
simpr |
|
40 |
39
|
adantr |
|
41 |
|
simpr |
|
42 |
2 3 7 9 32
|
matvscacell |
|
43 |
38 40 41 42
|
syl3anc |
|
44 |
43
|
fveq2d |
|
45 |
36
|
anim2i |
|
46 |
|
simpr |
|
47 |
45 46
|
anim12i |
|
48 |
|
df-3an |
|
49 |
47 48
|
sylibr |
|
50 |
1 2 3 4 8
|
mat2pmatvalel |
|
51 |
49 50
|
sylan |
|
52 |
51
|
oveq2d |
|
53 |
35 44 52
|
3eqtr4d |
|
54 |
|
simpll |
|
55 |
54
|
adantr |
|
56 |
7 2 3 9
|
matvscl |
|
57 |
45 56
|
sylan |
|
58 |
57
|
adantr |
|
59 |
1 2 3 4 8
|
mat2pmatvalel |
|
60 |
55 38 58 41 59
|
syl31anc |
|
61 |
4
|
ply1ring |
|
62 |
36 61
|
syl |
|
63 |
62
|
ad2antlr |
|
64 |
63
|
adantr |
|
65 |
36
|
adantl |
|
66 |
|
simpl |
|
67 |
|
eqid |
|
68 |
4 8 7 67
|
ply1sclcl |
|
69 |
65 66 68
|
syl2an |
|
70 |
1 2 3 4 5 6
|
mat2pmatbas0 |
|
71 |
49 70
|
syl |
|
72 |
69 71
|
jca |
|
73 |
72
|
adantr |
|
74 |
5 6 67 10 33
|
matvscacell |
|
75 |
64 73 41 74
|
syl3anc |
|
76 |
53 60 75
|
3eqtr4d |
|
77 |
76
|
ralrimivva |
|
78 |
1 2 3 4 5 6
|
mat2pmatbas0 |
|
79 |
54 37 57 78
|
syl3anc |
|
80 |
67 5 6 10
|
matvscl |
|
81 |
54 63 72 80
|
syl21anc |
|
82 |
5 6
|
eqmat |
|
83 |
79 81 82
|
syl2anc |
|
84 |
77 83
|
mpbird |
|