Step |
Hyp |
Ref |
Expression |
1 |
|
mat2pmatbas.t |
|
2 |
|
mat2pmatbas.a |
|
3 |
|
mat2pmatbas.b |
|
4 |
|
mat2pmatbas.p |
|
5 |
|
mat2pmatbas.c |
|
6 |
|
mat2pmatbas0.h |
|
7 |
|
eqid |
|
8 |
2 7
|
matmulr |
|
9 |
8
|
eqcomd |
|
10 |
9
|
oveqdr |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
|
crngring |
|
14 |
13
|
ad2antlr |
|
15 |
|
simpll |
|
16 |
3
|
eleq2i |
|
17 |
16
|
biimpi |
|
18 |
17
|
adantr |
|
19 |
18
|
adantl |
|
20 |
2 11
|
matbas2 |
|
21 |
20
|
adantr |
|
22 |
19 21
|
eleqtrrd |
|
23 |
3
|
eleq2i |
|
24 |
23
|
biimpi |
|
25 |
24
|
ad2antll |
|
26 |
20
|
eleq2d |
|
27 |
26
|
adantr |
|
28 |
25 27
|
mpbird |
|
29 |
7 11 12 14 15 15 15 22 28
|
mamuval |
|
30 |
10 29
|
eqtrd |
|
31 |
30
|
3ad2ant1 |
|
32 |
|
oveq1 |
|
33 |
|
oveq2 |
|
34 |
32 33
|
oveqan12d |
|
35 |
34
|
mpteq2dv |
|
36 |
35
|
oveq2d |
|
37 |
36
|
adantl |
|
38 |
|
simp2 |
|
39 |
|
simp3 |
|
40 |
|
ovexd |
|
41 |
31 37 38 39 40
|
ovmpod |
|
42 |
41
|
fveq2d |
|
43 |
|
eqid |
|
44 |
|
ringcmn |
|
45 |
13 44
|
syl |
|
46 |
45
|
ad2antlr |
|
47 |
46
|
3ad2ant1 |
|
48 |
4
|
ply1ring |
|
49 |
13 48
|
syl |
|
50 |
|
ringmnd |
|
51 |
49 50
|
syl |
|
52 |
51
|
ad2antlr |
|
53 |
52
|
3ad2ant1 |
|
54 |
15
|
3ad2ant1 |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
49
|
adantl |
|
58 |
4
|
ply1lmod |
|
59 |
13 58
|
syl |
|
60 |
59
|
adantl |
|
61 |
55 56 57 60
|
asclghm |
|
62 |
4
|
ply1sca |
|
63 |
62
|
adantl |
|
64 |
63
|
oveq1d |
|
65 |
61 64
|
eleqtrrd |
|
66 |
|
ghmmhm |
|
67 |
65 66
|
syl |
|
68 |
67
|
adantr |
|
69 |
68
|
3ad2ant1 |
|
70 |
14
|
3ad2ant1 |
|
71 |
70
|
adantr |
|
72 |
38
|
adantr |
|
73 |
|
simpr |
|
74 |
19
|
3ad2ant1 |
|
75 |
74
|
adantr |
|
76 |
75 16
|
sylibr |
|
77 |
2 11 3 72 73 76
|
matecld |
|
78 |
39
|
adantr |
|
79 |
2
|
fveq2i |
|
80 |
3 79
|
eqtri |
|
81 |
80
|
eleq2i |
|
82 |
81
|
biimpi |
|
83 |
82
|
ad2antll |
|
84 |
83
|
3ad2ant1 |
|
85 |
84
|
adantr |
|
86 |
85 81
|
sylibr |
|
87 |
2 11 3 73 78 86
|
matecld |
|
88 |
11 12
|
ringcl |
|
89 |
71 77 87 88
|
syl3anc |
|
90 |
|
eqid |
|
91 |
|
ovexd |
|
92 |
|
fvexd |
|
93 |
90 54 91 92
|
fsuppmptdm |
|
94 |
11 43 47 53 54 69 89 93
|
gsummptmhm |
|
95 |
4
|
ply1assa |
|
96 |
95
|
adantl |
|
97 |
55 56
|
asclrhm |
|
98 |
96 97
|
syl |
|
99 |
63
|
oveq1d |
|
100 |
98 99
|
eleqtrrd |
|
101 |
100
|
adantr |
|
102 |
101
|
3ad2ant1 |
|
103 |
102
|
adantr |
|
104 |
25
|
3ad2ant1 |
|
105 |
104
|
adantr |
|
106 |
105 23
|
sylibr |
|
107 |
2 11 3 73 78 106
|
matecld |
|
108 |
|
eqid |
|
109 |
11 12 108
|
rhmmul |
|
110 |
103 77 107 109
|
syl3anc |
|
111 |
110
|
mpteq2dva |
|
112 |
111
|
oveq2d |
|
113 |
42 94 112
|
3eqtr2d |
|
114 |
113
|
mpoeq3dva |
|
115 |
|
eqid |
|
116 |
|
eqid |
|
117 |
49
|
ad2antlr |
|
118 |
|
eqid |
|
119 |
|
eqid |
|
120 |
14
|
3ad2ant1 |
|
121 |
|
simp2 |
|
122 |
|
simp3 |
|
123 |
|
simp1rl |
|
124 |
2 11 3 121 122 123
|
matecld |
|
125 |
4 55 11 115
|
ply1sclcl |
|
126 |
120 124 125
|
syl2anc |
|
127 |
|
simp1rr |
|
128 |
2 11 3 121 122 127
|
matecld |
|
129 |
4 55 11 115
|
ply1sclcl |
|
130 |
120 128 129
|
syl2anc |
|
131 |
|
oveq12 |
|
132 |
131
|
fveq2d |
|
133 |
132
|
adantl |
|
134 |
|
oveq12 |
|
135 |
134
|
fveq2d |
|
136 |
135
|
adantl |
|
137 |
|
fvexd |
|
138 |
|
fvexd |
|
139 |
5 115 116 108 117 15 118 119 126 130 133 136 137 138
|
mpomatmul |
|
140 |
114 139
|
eqtr4d |
|
141 |
2
|
matring |
|
142 |
13 141
|
sylan2 |
|
143 |
142
|
anim1i |
|
144 |
|
3anass |
|
145 |
143 144
|
sylibr |
|
146 |
|
eqid |
|
147 |
3 146
|
ringcl |
|
148 |
145 147
|
syl |
|
149 |
1 2 3 4 55
|
mat2pmatval |
|
150 |
15 14 148 149
|
syl3anc |
|
151 |
|
simpl |
|
152 |
151
|
anim2i |
|
153 |
|
df-3an |
|
154 |
152 153
|
sylibr |
|
155 |
1 2 3 4 55
|
mat2pmatval |
|
156 |
154 155
|
syl |
|
157 |
|
simpr |
|
158 |
157
|
anim2i |
|
159 |
|
df-3an |
|
160 |
158 159
|
sylibr |
|
161 |
1 2 3 4 55
|
mat2pmatval |
|
162 |
160 161
|
syl |
|
163 |
156 162
|
oveq12d |
|
164 |
140 150 163
|
3eqtr4d |
|
165 |
164
|
ralrimivva |
|