Metamath Proof Explorer


Theorem mat2pmatrhm

Description: The transformation of matrices into polynomial matrices is a ring homomorphism. (Contributed by AV, 29-Oct-2019)

Ref Expression
Hypotheses mat2pmatbas.t T = N matToPolyMat R
mat2pmatbas.a A = N Mat R
mat2pmatbas.b B = Base A
mat2pmatbas.p P = Poly 1 R
mat2pmatbas.c C = N Mat P
mat2pmatbas0.h H = Base C
Assertion mat2pmatrhm N Fin R CRing T A RingHom C

Proof

Step Hyp Ref Expression
1 mat2pmatbas.t T = N matToPolyMat R
2 mat2pmatbas.a A = N Mat R
3 mat2pmatbas.b B = Base A
4 mat2pmatbas.p P = Poly 1 R
5 mat2pmatbas.c C = N Mat P
6 mat2pmatbas0.h H = Base C
7 crngring R CRing R Ring
8 2 matring N Fin R Ring A Ring
9 7 8 sylan2 N Fin R CRing A Ring
10 4 ply1ring R Ring P Ring
11 7 10 syl R CRing P Ring
12 5 matring N Fin P Ring C Ring
13 11 12 sylan2 N Fin R CRing C Ring
14 1 2 3 4 5 6 mat2pmatghm N Fin R Ring T A GrpHom C
15 7 14 sylan2 N Fin R CRing T A GrpHom C
16 1 2 3 4 5 6 mat2pmatmhm N Fin R CRing T mulGrp A MndHom mulGrp C
17 15 16 jca N Fin R CRing T A GrpHom C T mulGrp A MndHom mulGrp C
18 eqid mulGrp A = mulGrp A
19 eqid mulGrp C = mulGrp C
20 18 19 isrhm T A RingHom C A Ring C Ring T A GrpHom C T mulGrp A MndHom mulGrp C
21 9 13 17 20 syl21anbrc N Fin R CRing T A RingHom C