Metamath Proof Explorer


Theorem mat2pmatscmxcl

Description: A transformed matrix multiplied with a power of the variable of a polynomial is a polynomial matrix. (Contributed by AV, 6-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses mat2pmatscmxcl.a A = N Mat R
mat2pmatscmxcl.k K = Base A
mat2pmatscmxcl.t T = N matToPolyMat R
mat2pmatscmxcl.p P = Poly 1 R
mat2pmatscmxcl.c C = N Mat P
mat2pmatscmxcl.b B = Base C
mat2pmatscmxcl.m ˙ = C
mat2pmatscmxcl.e × ˙ = mulGrp P
mat2pmatscmxcl.x X = var 1 R
Assertion mat2pmatscmxcl N Fin R Ring M K L 0 L × ˙ X ˙ T M B

Proof

Step Hyp Ref Expression
1 mat2pmatscmxcl.a A = N Mat R
2 mat2pmatscmxcl.k K = Base A
3 mat2pmatscmxcl.t T = N matToPolyMat R
4 mat2pmatscmxcl.p P = Poly 1 R
5 mat2pmatscmxcl.c C = N Mat P
6 mat2pmatscmxcl.b B = Base C
7 mat2pmatscmxcl.m ˙ = C
8 mat2pmatscmxcl.e × ˙ = mulGrp P
9 mat2pmatscmxcl.x X = var 1 R
10 simpll N Fin R Ring M K L 0 N Fin
11 4 ply1ring R Ring P Ring
12 11 ad2antlr N Fin R Ring M K L 0 P Ring
13 eqid mulGrp P = mulGrp P
14 eqid Base P = Base P
15 4 9 13 8 14 ply1moncl R Ring L 0 L × ˙ X Base P
16 15 ad2ant2l N Fin R Ring M K L 0 L × ˙ X Base P
17 simpl M K L 0 M K
18 17 anim2i N Fin R Ring M K L 0 N Fin R Ring M K
19 df-3an N Fin R Ring M K N Fin R Ring M K
20 18 19 sylibr N Fin R Ring M K L 0 N Fin R Ring M K
21 3 1 2 4 5 6 mat2pmatbas0 N Fin R Ring M K T M B
22 20 21 syl N Fin R Ring M K L 0 T M B
23 14 5 6 7 matvscl N Fin P Ring L × ˙ X Base P T M B L × ˙ X ˙ T M B
24 10 12 16 22 23 syl22anc N Fin R Ring M K L 0 L × ˙ X ˙ T M B