Metamath Proof Explorer


Theorem mat2pmatval

Description: The result of a matrix transformation. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses mat2pmatfval.t T = N matToPolyMat R
mat2pmatfval.a A = N Mat R
mat2pmatfval.b B = Base A
mat2pmatfval.p P = Poly 1 R
mat2pmatfval.s S = algSc P
Assertion mat2pmatval N Fin R V M B T M = x N , y N S x M y

Proof

Step Hyp Ref Expression
1 mat2pmatfval.t T = N matToPolyMat R
2 mat2pmatfval.a A = N Mat R
3 mat2pmatfval.b B = Base A
4 mat2pmatfval.p P = Poly 1 R
5 mat2pmatfval.s S = algSc P
6 1 2 3 4 5 mat2pmatfval N Fin R V T = m B x N , y N S x m y
7 6 3adant3 N Fin R V M B T = m B x N , y N S x m y
8 oveq m = M x m y = x M y
9 8 fveq2d m = M S x m y = S x M y
10 9 mpoeq3dv m = M x N , y N S x m y = x N , y N S x M y
11 10 adantl N Fin R V M B m = M x N , y N S x m y = x N , y N S x M y
12 simp3 N Fin R V M B M B
13 simp1 N Fin R V M B N Fin
14 mpoexga N Fin N Fin x N , y N S x M y V
15 13 13 14 syl2anc N Fin R V M B x N , y N S x M y V
16 7 11 12 15 fvmptd N Fin R V M B T M = x N , y N S x M y