Metamath Proof Explorer


Theorem mat2pmatvalel

Description: A (matrix) element of the result of a matrix transformation. (Contributed by AV, 31-Jul-2019)

Ref Expression
Hypotheses mat2pmatfval.t T = N matToPolyMat R
mat2pmatfval.a A = N Mat R
mat2pmatfval.b B = Base A
mat2pmatfval.p P = Poly 1 R
mat2pmatfval.s S = algSc P
Assertion mat2pmatvalel N Fin R V M B X N Y N X T M Y = S X M Y

Proof

Step Hyp Ref Expression
1 mat2pmatfval.t T = N matToPolyMat R
2 mat2pmatfval.a A = N Mat R
3 mat2pmatfval.b B = Base A
4 mat2pmatfval.p P = Poly 1 R
5 mat2pmatfval.s S = algSc P
6 1 2 3 4 5 mat2pmatval N Fin R V M B T M = x N , y N S x M y
7 6 adantr N Fin R V M B X N Y N T M = x N , y N S x M y
8 oveq12 x = X y = Y x M y = X M Y
9 8 fveq2d x = X y = Y S x M y = S X M Y
10 9 adantl N Fin R V M B X N Y N x = X y = Y S x M y = S X M Y
11 simprl N Fin R V M B X N Y N X N
12 simprr N Fin R V M B X N Y N Y N
13 fvexd N Fin R V M B X N Y N S X M Y V
14 7 10 11 12 13 ovmpod N Fin R V M B X N Y N X T M Y = S X M Y