| Step | Hyp | Ref | Expression | 
						
							| 1 |  | matassa.a |  | 
						
							| 2 |  | eqid |  | 
						
							| 3 | 1 2 | matbas2 |  | 
						
							| 4 | 1 | matsca2 |  | 
						
							| 5 |  | eqidd |  | 
						
							| 6 |  | eqidd |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 1 7 | matmulr |  | 
						
							| 9 |  | crngring |  | 
						
							| 10 | 1 | matlmod |  | 
						
							| 11 | 9 10 | sylan2 |  | 
						
							| 12 | 1 | matring |  | 
						
							| 13 | 9 12 | sylan2 |  | 
						
							| 14 | 9 | ad2antlr |  | 
						
							| 15 |  | simpll |  | 
						
							| 16 |  | eqid |  | 
						
							| 17 |  | simpr1 |  | 
						
							| 18 |  | simpr2 |  | 
						
							| 19 |  | simpr3 |  | 
						
							| 20 | 2 14 7 15 15 15 16 17 18 19 | mamuvs1 |  | 
						
							| 21 | 3 | adantr |  | 
						
							| 22 | 18 21 | eleqtrd |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 |  | eqid |  | 
						
							| 25 |  | eqid |  | 
						
							| 26 | 1 23 2 24 16 25 | matvsca2 |  | 
						
							| 27 | 17 22 26 | syl2anc |  | 
						
							| 28 | 27 | oveq1d |  | 
						
							| 29 | 2 14 7 15 15 15 18 19 | mamucl |  | 
						
							| 30 | 29 21 | eleqtrd |  | 
						
							| 31 | 1 23 2 24 16 25 | matvsca2 |  | 
						
							| 32 | 17 30 31 | syl2anc |  | 
						
							| 33 | 20 28 32 | 3eqtr4d |  | 
						
							| 34 |  | simplr |  | 
						
							| 35 | 34 2 16 7 15 15 15 18 17 19 | mamuvs2 |  | 
						
							| 36 | 19 21 | eleqtrd |  | 
						
							| 37 | 1 23 2 24 16 25 | matvsca2 |  | 
						
							| 38 | 17 36 37 | syl2anc |  | 
						
							| 39 | 38 | oveq2d |  | 
						
							| 40 | 35 39 32 | 3eqtr4d |  | 
						
							| 41 | 3 4 5 6 8 11 13 33 40 | isassad |  |