Metamath Proof Explorer


Theorem matbas2

Description: The base set of the matrix ring as a set exponential. (Contributed by Stefan O'Rear, 5-Sep-2015) (Proof shortened by AV, 16-Dec-2018)

Ref Expression
Hypotheses matbas2.a A = N Mat R
matbas2.k K = Base R
Assertion matbas2 N Fin R V K N × N = Base A

Proof

Step Hyp Ref Expression
1 matbas2.a A = N Mat R
2 matbas2.k K = Base R
3 xpfi N Fin N Fin N × N Fin
4 3 anidms N Fin N × N Fin
5 4 anim1ci N Fin R V R V N × N Fin
6 eqid R freeLMod N × N = R freeLMod N × N
7 6 2 frlmfibas R V N × N Fin K N × N = Base R freeLMod N × N
8 5 7 syl N Fin R V K N × N = Base R freeLMod N × N
9 1 6 matbas N Fin R V Base R freeLMod N × N = Base A
10 8 9 eqtrd N Fin R V K N × N = Base A