Metamath Proof Explorer


Theorem matbas2i

Description: A matrix is a function. (Contributed by Stefan O'Rear, 11-Sep-2015)

Ref Expression
Hypotheses matbas2.a A = N Mat R
matbas2.k K = Base R
matbas2i.b B = Base A
Assertion matbas2i M B M K N × N

Proof

Step Hyp Ref Expression
1 matbas2.a A = N Mat R
2 matbas2.k K = Base R
3 matbas2i.b B = Base A
4 id M B M B
5 4 3 eleqtrdi M B M Base A
6 1 3 matrcl M B N Fin R V
7 1 2 matbas2 N Fin R V K N × N = Base A
8 6 7 syl M B K N × N = Base A
9 5 8 eleqtrrd M B M K N × N