Metamath Proof Explorer


Theorem matcpmric

Description: The ring of matrices over a commutative ring is isomorphic to the ring of scalar matrices over the same ring. (Contributed by AV, 30-Dec-2019)

Ref Expression
Hypotheses matcpmric.a A = N Mat R
matcpmric.p P = Poly 1 R
matcpmric.c C = N Mat P
matcpmric.s S = N ConstPolyMat R
matcpmric.u U = C 𝑠 S
Assertion matcpmric N Fin R CRing A 𝑟 U

Proof

Step Hyp Ref Expression
1 matcpmric.a A = N Mat R
2 matcpmric.p P = Poly 1 R
3 matcpmric.c C = N Mat P
4 matcpmric.s S = N ConstPolyMat R
5 matcpmric.u U = C 𝑠 S
6 eqid N matToPolyMat R = N matToPolyMat R
7 eqid Base A = Base A
8 4 6 1 7 2 3 5 m2cpmrngiso N Fin R CRing N matToPolyMat R A RingIso U
9 8 ne0d N Fin R CRing A RingIso U
10 brric A 𝑟 U A RingIso U
11 9 10 sylibr N Fin R CRing A 𝑟 U