Metamath Proof Explorer


Theorem matecl

Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018)

Ref Expression
Hypotheses matecl.a A = N Mat R
matecl.k K = Base R
Assertion matecl I N J N M Base A I M J K

Proof

Step Hyp Ref Expression
1 matecl.a A = N Mat R
2 matecl.k K = Base R
3 eqid Base A = Base A
4 1 3 matrcl M Base A N Fin R V
5 4 3ad2ant3 I N J N M Base A N Fin R V
6 1 2 matbas2 N Fin R V K N × N = Base A
7 6 eqcomd N Fin R V Base A = K N × N
8 7 eleq2d N Fin R V M Base A M K N × N
9 2 fvexi K V
10 9 a1i R V K V
11 sqxpexg N Fin N × N V
12 elmapg K V N × N V M K N × N M : N × N K
13 10 11 12 syl2anr N Fin R V M K N × N M : N × N K
14 ffnov M : N × N K M Fn N × N i N j N i M j K
15 oveq1 i = I i M j = I M j
16 15 eleq1d i = I i M j K I M j K
17 oveq2 j = J I M j = I M J
18 17 eleq1d j = J I M j K I M J K
19 16 18 rspc2v I N J N i N j N i M j K I M J K
20 19 com12 i N j N i M j K I N J N I M J K
21 20 adantl M Fn N × N i N j N i M j K I N J N I M J K
22 21 a1i N Fin R V M Fn N × N i N j N i M j K I N J N I M J K
23 14 22 syl5bi N Fin R V M : N × N K I N J N I M J K
24 13 23 sylbid N Fin R V M K N × N I N J N I M J K
25 8 24 sylbid N Fin R V M Base A I N J N I M J K
26 25 com13 I N J N M Base A N Fin R V I M J K
27 26 ex I N J N M Base A N Fin R V I M J K
28 27 3imp1 I N J N M Base A N Fin R V I M J K
29 5 28 mpdan I N J N M Base A I M J K