Metamath Proof Explorer


Theorem matepm2cl

Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses matepmcl.a A = N Mat R
matepmcl.b B = Base A
matepmcl.p P = Base SymGrp N
Assertion matepm2cl R Ring Q P M B n N n M Q n Base R

Proof

Step Hyp Ref Expression
1 matepmcl.a A = N Mat R
2 matepmcl.b B = Base A
3 matepmcl.p P = Base SymGrp N
4 simpr R Ring Q P M B n N n N
5 eqid SymGrp N = SymGrp N
6 5 3 symgfv Q P n N Q n N
7 6 3ad2antl2 R Ring Q P M B n N Q n N
8 2 eleq2i M B M Base A
9 8 biimpi M B M Base A
10 9 3ad2ant3 R Ring Q P M B M Base A
11 10 adantr R Ring Q P M B n N M Base A
12 eqid Base R = Base R
13 1 12 matecl n N Q n N M Base A n M Q n Base R
14 4 7 11 13 syl3anc R Ring Q P M B n N n M Q n Base R
15 14 ralrimiva R Ring Q P M B n N n M Q n Base R