Metamath Proof Explorer


Theorem matepmcl

Description: Each entry of a matrix with an index as permutation of the other is an element of the underlying ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses matepmcl.a A = N Mat R
matepmcl.b B = Base A
matepmcl.p P = Base SymGrp N
Assertion matepmcl R Ring Q P M B n N Q n M n Base R

Proof

Step Hyp Ref Expression
1 matepmcl.a A = N Mat R
2 matepmcl.b B = Base A
3 matepmcl.p P = Base SymGrp N
4 eqid SymGrp N = SymGrp N
5 4 3 symgfv Q P n N Q n N
6 5 3ad2antl2 R Ring Q P M B n N Q n N
7 simpr R Ring Q P M B n N n N
8 2 eleq2i M B M Base A
9 8 biimpi M B M Base A
10 9 3ad2ant3 R Ring Q P M B M Base A
11 10 adantr R Ring Q P M B n N M Base A
12 eqid Base R = Base R
13 1 12 matecl Q n N n N M Base A Q n M n Base R
14 6 7 11 13 syl3anc R Ring Q P M B n N Q n M n Base R
15 14 ralrimiva R Ring Q P M B n N Q n M n Base R