Step |
Hyp |
Ref |
Expression |
1 |
|
matgsum.a |
|
2 |
|
matgsum.b |
|
3 |
|
matgsum.z |
|
4 |
|
matgsum.i |
|
5 |
|
matgsum.j |
|
6 |
|
matgsum.r |
|
7 |
|
matgsum.f |
|
8 |
|
matgsum.w |
|
9 |
5
|
mptexd |
|
10 |
1
|
ovexi |
|
11 |
10
|
a1i |
|
12 |
|
ovexd |
|
13 |
|
eqid |
|
14 |
1 13
|
matbas |
|
15 |
4 6 14
|
syl2anc |
|
16 |
15
|
eqcomd |
|
17 |
1 13
|
matplusg |
|
18 |
4 6 17
|
syl2anc |
|
19 |
18
|
eqcomd |
|
20 |
9 11 12 16 19
|
gsumpropd |
|
21 |
|
mpompts |
|
22 |
21
|
a1i |
|
23 |
22
|
mpteq2dv |
|
24 |
23
|
oveq2d |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
|
xpfi |
|
28 |
4 4 27
|
syl2anc |
|
29 |
7 2
|
eleqtrdi |
|
30 |
21
|
eqcomi |
|
31 |
30
|
a1i |
|
32 |
4 6
|
jca |
|
33 |
32
|
adantr |
|
34 |
33 14
|
syl |
|
35 |
29 31 34
|
3eltr4d |
|
36 |
30
|
mpteq2i |
|
37 |
3
|
eqcomi |
|
38 |
8 36 37
|
3brtr4g |
|
39 |
1 13
|
mat0 |
|
40 |
4 6 39
|
syl2anc |
|
41 |
38 40
|
breqtrrd |
|
42 |
13 25 26 28 5 6 35 41
|
frlmgsum |
|
43 |
24 42
|
eqtrd |
|
44 |
|
fvex |
|
45 |
|
csbov2g |
|
46 |
44 45
|
ax-mp |
|
47 |
46
|
csbeq2i |
|
48 |
|
fvex |
|
49 |
|
csbov2g |
|
50 |
48 49
|
ax-mp |
|
51 |
|
csbmpt2 |
|
52 |
44 51
|
ax-mp |
|
53 |
52
|
csbeq2i |
|
54 |
|
csbmpt2 |
|
55 |
48 54
|
ax-mp |
|
56 |
53 55
|
eqtri |
|
57 |
56
|
oveq2i |
|
58 |
47 50 57
|
3eqtrri |
|
59 |
58
|
mpteq2i |
|
60 |
|
mpompts |
|
61 |
59 60
|
eqtr4i |
|
62 |
61
|
a1i |
|
63 |
20 43 62
|
3eqtrd |
|