Metamath Proof Explorer


Theorem matgsumcl

Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses madetsumid.a A = N Mat R
madetsumid.b B = Base A
madetsumid.u U = mulGrp R
Assertion matgsumcl R CRing M B U r N r M r Base R

Proof

Step Hyp Ref Expression
1 madetsumid.a A = N Mat R
2 madetsumid.b B = Base A
3 madetsumid.u U = mulGrp R
4 eqid Base R = Base R
5 3 4 mgpbas Base R = Base U
6 3 crngmgp R CRing U CMnd
7 6 adantr R CRing M B U CMnd
8 1 2 matrcl M B N Fin R V
9 8 adantl R CRing M B N Fin R V
10 9 simpld R CRing M B N Fin
11 simpr R CRing M B M B
12 1 4 2 matbas2i M B M Base R N × N
13 elmapi M Base R N × N M : N × N Base R
14 11 12 13 3syl R CRing M B M : N × N Base R
15 14 adantr R CRing M B r N M : N × N Base R
16 simpr R CRing M B r N r N
17 15 16 16 fovrnd R CRing M B r N r M r Base R
18 17 ralrimiva R CRing M B r N r M r Base R
19 5 7 10 18 gsummptcl R CRing M B U r N r M r Base R