Metamath Proof Explorer


Theorem matinv

Description: The inverse of a matrix is the adjunct of the matrix multiplied with the inverse of the determinant of the matrix if the determinant is a unit in the underlying ring. Proposition 4.16 in Lang p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses matinv.a A = N Mat R
matinv.j J = N maAdju R
matinv.d D = N maDet R
matinv.b B = Base A
matinv.u U = Unit A
matinv.v V = Unit R
matinv.h H = inv r R
matinv.i I = inv r A
matinv.t ˙ = A
Assertion matinv R CRing M B D M V M U I M = H D M ˙ J M

Proof

Step Hyp Ref Expression
1 matinv.a A = N Mat R
2 matinv.j J = N maAdju R
3 matinv.d D = N maDet R
4 matinv.b B = Base A
5 matinv.u U = Unit A
6 matinv.v V = Unit R
7 matinv.h H = inv r R
8 matinv.i I = inv r A
9 matinv.t ˙ = A
10 eqid A = A
11 eqid 1 A = 1 A
12 1 4 matrcl M B N Fin R V
13 12 simpld M B N Fin
14 13 3ad2ant2 R CRing M B D M V N Fin
15 simp1 R CRing M B D M V R CRing
16 1 matassa N Fin R CRing A AssAlg
17 14 15 16 syl2anc R CRing M B D M V A AssAlg
18 assaring A AssAlg A Ring
19 17 18 syl R CRing M B D M V A Ring
20 simp2 R CRing M B D M V M B
21 assalmod A AssAlg A LMod
22 17 21 syl R CRing M B D M V A LMod
23 crngring R CRing R Ring
24 23 3ad2ant1 R CRing M B D M V R Ring
25 simp3 R CRing M B D M V D M V
26 eqid Base R = Base R
27 6 7 26 ringinvcl R Ring D M V H D M Base R
28 24 25 27 syl2anc R CRing M B D M V H D M Base R
29 1 matsca2 N Fin R CRing R = Scalar A
30 14 15 29 syl2anc R CRing M B D M V R = Scalar A
31 30 fveq2d R CRing M B D M V Base R = Base Scalar A
32 28 31 eleqtrd R CRing M B D M V H D M Base Scalar A
33 1 2 4 maduf R CRing J : B B
34 33 3ad2ant1 R CRing M B D M V J : B B
35 34 20 ffvelrnd R CRing M B D M V J M B
36 eqid Scalar A = Scalar A
37 eqid Base Scalar A = Base Scalar A
38 4 36 9 37 lmodvscl A LMod H D M Base Scalar A J M B H D M ˙ J M B
39 22 32 35 38 syl3anc R CRing M B D M V H D M ˙ J M B
40 4 36 37 9 10 assaassr A AssAlg H D M Base Scalar A M B J M B M A H D M ˙ J M = H D M ˙ M A J M
41 17 32 20 35 40 syl13anc R CRing M B D M V M A H D M ˙ J M = H D M ˙ M A J M
42 1 4 2 3 11 10 9 madurid M B R CRing M A J M = D M ˙ 1 A
43 20 15 42 syl2anc R CRing M B D M V M A J M = D M ˙ 1 A
44 43 oveq2d R CRing M B D M V H D M ˙ M A J M = H D M ˙ D M ˙ 1 A
45 eqid R = R
46 eqid 1 R = 1 R
47 6 7 45 46 unitlinv R Ring D M V H D M R D M = 1 R
48 24 25 47 syl2anc R CRing M B D M V H D M R D M = 1 R
49 30 fveq2d R CRing M B D M V R = Scalar A
50 49 oveqd R CRing M B D M V H D M R D M = H D M Scalar A D M
51 30 fveq2d R CRing M B D M V 1 R = 1 Scalar A
52 48 50 51 3eqtr3d R CRing M B D M V H D M Scalar A D M = 1 Scalar A
53 52 oveq1d R CRing M B D M V H D M Scalar A D M ˙ 1 A = 1 Scalar A ˙ 1 A
54 26 6 unitcl D M V D M Base R
55 54 3ad2ant3 R CRing M B D M V D M Base R
56 55 31 eleqtrd R CRing M B D M V D M Base Scalar A
57 4 11 ringidcl A Ring 1 A B
58 19 57 syl R CRing M B D M V 1 A B
59 eqid Scalar A = Scalar A
60 4 36 9 37 59 lmodvsass A LMod H D M Base Scalar A D M Base Scalar A 1 A B H D M Scalar A D M ˙ 1 A = H D M ˙ D M ˙ 1 A
61 22 32 56 58 60 syl13anc R CRing M B D M V H D M Scalar A D M ˙ 1 A = H D M ˙ D M ˙ 1 A
62 eqid 1 Scalar A = 1 Scalar A
63 4 36 9 62 lmodvs1 A LMod 1 A B 1 Scalar A ˙ 1 A = 1 A
64 22 58 63 syl2anc R CRing M B D M V 1 Scalar A ˙ 1 A = 1 A
65 53 61 64 3eqtr3d R CRing M B D M V H D M ˙ D M ˙ 1 A = 1 A
66 41 44 65 3eqtrd R CRing M B D M V M A H D M ˙ J M = 1 A
67 4 36 37 9 10 assaass A AssAlg H D M Base Scalar A J M B M B H D M ˙ J M A M = H D M ˙ J M A M
68 17 32 35 20 67 syl13anc R CRing M B D M V H D M ˙ J M A M = H D M ˙ J M A M
69 1 4 2 3 11 10 9 madulid M B R CRing J M A M = D M ˙ 1 A
70 20 15 69 syl2anc R CRing M B D M V J M A M = D M ˙ 1 A
71 70 oveq2d R CRing M B D M V H D M ˙ J M A M = H D M ˙ D M ˙ 1 A
72 68 71 65 3eqtrd R CRing M B D M V H D M ˙ J M A M = 1 A
73 4 10 11 5 8 19 20 39 66 72 invrvald R CRing M B D M V M U I M = H D M ˙ J M