Step |
Hyp |
Ref |
Expression |
1 |
|
matinv.a |
|
2 |
|
matinv.j |
|
3 |
|
matinv.d |
|
4 |
|
matinv.b |
|
5 |
|
matinv.u |
|
6 |
|
matinv.v |
|
7 |
|
matinv.h |
|
8 |
|
matinv.i |
|
9 |
|
matinv.t |
|
10 |
|
eqid |
|
11 |
|
eqid |
|
12 |
1 4
|
matrcl |
|
13 |
12
|
simpld |
|
14 |
13
|
3ad2ant2 |
|
15 |
|
simp1 |
|
16 |
1
|
matassa |
|
17 |
14 15 16
|
syl2anc |
|
18 |
|
assaring |
|
19 |
17 18
|
syl |
|
20 |
|
simp2 |
|
21 |
|
assalmod |
|
22 |
17 21
|
syl |
|
23 |
|
crngring |
|
24 |
23
|
3ad2ant1 |
|
25 |
|
simp3 |
|
26 |
|
eqid |
|
27 |
6 7 26
|
ringinvcl |
|
28 |
24 25 27
|
syl2anc |
|
29 |
1
|
matsca2 |
|
30 |
14 15 29
|
syl2anc |
|
31 |
30
|
fveq2d |
|
32 |
28 31
|
eleqtrd |
|
33 |
1 2 4
|
maduf |
|
34 |
33
|
3ad2ant1 |
|
35 |
34 20
|
ffvelrnd |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
4 36 9 37
|
lmodvscl |
|
39 |
22 32 35 38
|
syl3anc |
|
40 |
4 36 37 9 10
|
assaassr |
|
41 |
17 32 20 35 40
|
syl13anc |
|
42 |
1 4 2 3 11 10 9
|
madurid |
|
43 |
20 15 42
|
syl2anc |
|
44 |
43
|
oveq2d |
|
45 |
|
eqid |
|
46 |
|
eqid |
|
47 |
6 7 45 46
|
unitlinv |
|
48 |
24 25 47
|
syl2anc |
|
49 |
30
|
fveq2d |
|
50 |
49
|
oveqd |
|
51 |
30
|
fveq2d |
|
52 |
48 50 51
|
3eqtr3d |
|
53 |
52
|
oveq1d |
|
54 |
26 6
|
unitcl |
|
55 |
54
|
3ad2ant3 |
|
56 |
55 31
|
eleqtrd |
|
57 |
4 11
|
ringidcl |
|
58 |
19 57
|
syl |
|
59 |
|
eqid |
|
60 |
4 36 9 37 59
|
lmodvsass |
|
61 |
22 32 56 58 60
|
syl13anc |
|
62 |
|
eqid |
|
63 |
4 36 9 62
|
lmodvs1 |
|
64 |
22 58 63
|
syl2anc |
|
65 |
53 61 64
|
3eqtr3d |
|
66 |
41 44 65
|
3eqtrd |
|
67 |
4 36 37 9 10
|
assaass |
|
68 |
17 32 35 20 67
|
syl13anc |
|
69 |
1 4 2 3 11 10 9
|
madulid |
|
70 |
20 15 69
|
syl2anc |
|
71 |
70
|
oveq2d |
|
72 |
68 71 65
|
3eqtrd |
|
73 |
4 10 11 5 8 19 20 39 66 72
|
invrvald |
|