Step |
Hyp |
Ref |
Expression |
1 |
|
matplusgcell.a |
|
2 |
|
matplusgcell.b |
|
3 |
|
matinvgcell.v |
|
4 |
|
matinvgcell.w |
|
5 |
1 2
|
matrcl |
|
6 |
5
|
simpld |
|
7 |
|
simpl |
|
8 |
1
|
matgrp |
|
9 |
6 7 8
|
syl2an2 |
|
10 |
|
eqid |
|
11 |
2 10
|
grpidcl |
|
12 |
9 11
|
syl |
|
13 |
|
simpr |
|
14 |
12 13
|
jca |
|
15 |
14
|
3adant3 |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
1 2 16 17
|
matsubgcell |
|
19 |
15 18
|
syld3an2 |
|
20 |
2 16 4 10
|
grpinvval2 |
|
21 |
9 13 20
|
syl2anc |
|
22 |
21
|
3adant3 |
|
23 |
22
|
oveqd |
|
24 |
|
ringgrp |
|
25 |
24
|
3ad2ant1 |
|
26 |
|
simp3 |
|
27 |
2
|
eleq2i |
|
28 |
27
|
biimpi |
|
29 |
28
|
3ad2ant2 |
|
30 |
|
df-3an |
|
31 |
26 29 30
|
sylanbrc |
|
32 |
|
eqid |
|
33 |
1 32
|
matecl |
|
34 |
31 33
|
syl |
|
35 |
|
eqid |
|
36 |
32 17 3 35
|
grpinvval2 |
|
37 |
25 34 36
|
syl2anc |
|
38 |
6
|
anim1i |
|
39 |
38
|
ancoms |
|
40 |
1 35
|
mat0op |
|
41 |
39 40
|
syl |
|
42 |
41
|
3adant3 |
|
43 |
|
eqidd |
|
44 |
26
|
simpld |
|
45 |
|
simp3r |
|
46 |
|
fvexd |
|
47 |
42 43 44 45 46
|
ovmpod |
|
48 |
47
|
eqcomd |
|
49 |
48
|
oveq1d |
|
50 |
37 49
|
eqtrd |
|
51 |
19 23 50
|
3eqtr4d |
|