Database
BASIC LINEAR ALGEBRA
Matrices
Square matrices
matlmod
Next ⟩
matgrp
Metamath Proof Explorer
Ascii
Unicode
Theorem
matlmod
Description:
The matrix ring is a linear structure.
(Contributed by
Stefan O'Rear
, 4-Sep-2015)
Ref
Expression
Hypothesis
matlmod.a
⊢
A
=
N
Mat
R
Assertion
matlmod
⊢
N
∈
Fin
∧
R
∈
Ring
→
A
∈
LMod
Proof
Step
Hyp
Ref
Expression
1
matlmod.a
⊢
A
=
N
Mat
R
2
sqxpexg
⊢
N
∈
Fin
→
N
×
N
∈
V
3
eqid
⊢
R
freeLMod
N
×
N
=
R
freeLMod
N
×
N
4
3
frlmlmod
⊢
R
∈
Ring
∧
N
×
N
∈
V
→
R
freeLMod
N
×
N
∈
LMod
5
4
ancoms
⊢
N
×
N
∈
V
∧
R
∈
Ring
→
R
freeLMod
N
×
N
∈
LMod
6
2
5
sylan
⊢
N
∈
Fin
∧
R
∈
Ring
→
R
freeLMod
N
×
N
∈
LMod
7
eqidd
⊢
N
∈
Fin
∧
R
∈
Ring
→
Base
R
freeLMod
N
×
N
=
Base
R
freeLMod
N
×
N
8
1
3
matbas
⊢
N
∈
Fin
∧
R
∈
Ring
→
Base
R
freeLMod
N
×
N
=
Base
A
9
1
3
matplusg
⊢
N
∈
Fin
∧
R
∈
Ring
→
+
R
freeLMod
N
×
N
=
+
A
10
9
oveqdr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
R
freeLMod
N
×
N
∧
y
∈
Base
R
freeLMod
N
×
N
→
x
+
R
freeLMod
N
×
N
y
=
x
+
A
y
11
eqidd
⊢
N
∈
Fin
∧
R
∈
Ring
→
Scalar
⁡
R
freeLMod
N
×
N
=
Scalar
⁡
R
freeLMod
N
×
N
12
1
3
matsca
⊢
N
∈
Fin
∧
R
∈
Ring
→
Scalar
⁡
R
freeLMod
N
×
N
=
Scalar
⁡
A
13
eqid
⊢
Base
Scalar
⁡
R
freeLMod
N
×
N
=
Base
Scalar
⁡
R
freeLMod
N
×
N
14
1
3
matvsca
⊢
N
∈
Fin
∧
R
∈
Ring
→
⋅
R
freeLMod
N
×
N
=
⋅
A
15
14
oveqdr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
Scalar
⁡
R
freeLMod
N
×
N
∧
y
∈
Base
R
freeLMod
N
×
N
→
x
⋅
R
freeLMod
N
×
N
y
=
x
⋅
A
y
16
7
8
10
11
12
13
15
lmodpropd
⊢
N
∈
Fin
∧
R
∈
Ring
→
R
freeLMod
N
×
N
∈
LMod
↔
A
∈
LMod
17
6
16
mpbid
⊢
N
∈
Fin
∧
R
∈
Ring
→
A
∈
LMod