Metamath Proof Explorer


Theorem matlmod

Description: The matrix ring is a linear structure. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypothesis matlmod.a A = N Mat R
Assertion matlmod N Fin R Ring A LMod

Proof

Step Hyp Ref Expression
1 matlmod.a A = N Mat R
2 sqxpexg N Fin N × N V
3 eqid R freeLMod N × N = R freeLMod N × N
4 3 frlmlmod R Ring N × N V R freeLMod N × N LMod
5 4 ancoms N × N V R Ring R freeLMod N × N LMod
6 2 5 sylan N Fin R Ring R freeLMod N × N LMod
7 eqidd N Fin R Ring Base R freeLMod N × N = Base R freeLMod N × N
8 1 3 matbas N Fin R Ring Base R freeLMod N × N = Base A
9 1 3 matplusg N Fin R Ring + R freeLMod N × N = + A
10 9 oveqdr N Fin R Ring x Base R freeLMod N × N y Base R freeLMod N × N x + R freeLMod N × N y = x + A y
11 eqidd N Fin R Ring Scalar R freeLMod N × N = Scalar R freeLMod N × N
12 1 3 matsca N Fin R Ring Scalar R freeLMod N × N = Scalar A
13 eqid Base Scalar R freeLMod N × N = Base Scalar R freeLMod N × N
14 1 3 matvsca N Fin R Ring R freeLMod N × N = A
15 14 oveqdr N Fin R Ring x Base Scalar R freeLMod N × N y Base R freeLMod N × N x R freeLMod N × N y = x A y
16 7 8 10 11 12 13 15 lmodpropd N Fin R Ring R freeLMod N × N LMod A LMod
17 6 16 mpbid N Fin R Ring A LMod