Metamath Proof Explorer


Theorem matmulcell

Description: Multiplication in the matrix ring for a single cell of a matrix. (Contributed by AV, 17-Nov-2019) (Revised by AV, 3-Jul-2022)

Ref Expression
Hypotheses matmulcell.a A=NMatR
matmulcell.b B=BaseA
matmulcell.m ×˙=A
Assertion matmulcell RRingXBYBINJNIX×˙YJ=RjNIXjRjYJ

Proof

Step Hyp Ref Expression
1 matmulcell.a A=NMatR
2 matmulcell.b B=BaseA
3 matmulcell.m ×˙=A
4 1 2 matrcl XBNFinRV
5 eqid RmaMulNNN=RmaMulNNN
6 1 5 matmulr NFinRVRmaMulNNN=A
7 3 6 eqtr4id NFinRV×˙=RmaMulNNN
8 7 a1d NFinRVRRing×˙=RmaMulNNN
9 4 8 syl XBRRing×˙=RmaMulNNN
10 9 adantr XBYBRRing×˙=RmaMulNNN
11 10 impcom RRingXBYB×˙=RmaMulNNN
12 11 3adant3 RRingXBYBINJN×˙=RmaMulNNN
13 12 oveqd RRingXBYBINJNX×˙Y=XRmaMulNNNY
14 13 oveqd RRingXBYBINJNIX×˙YJ=IXRmaMulNNNYJ
15 eqid BaseR=BaseR
16 eqid R=R
17 simp1 RRingXBYBINJNRRing
18 4 simpld XBNFin
19 18 adantr XBYBNFin
20 19 3ad2ant2 RRingXBYBINJNNFin
21 1 15 2 matbas2i XBXBaseRN×N
22 21 adantr XBYBXBaseRN×N
23 22 3ad2ant2 RRingXBYBINJNXBaseRN×N
24 1 15 2 matbas2i YBYBaseRN×N
25 24 adantl XBYBYBaseRN×N
26 25 3ad2ant2 RRingXBYBINJNYBaseRN×N
27 simp3l RRingXBYBINJNIN
28 simp3r RRingXBYBINJNJN
29 5 15 16 17 20 20 20 23 26 27 28 mamufv RRingXBYBINJNIXRmaMulNNNYJ=RjNIXjRjYJ
30 14 29 eqtrd RRingXBYBINJNIX×˙YJ=RjNIXjRjYJ