Database
BASIC LINEAR ALGEBRA
Matrices
The matrix algebra
matmulr
Next ⟩
mamumat1cl
Metamath Proof Explorer
Ascii
Unicode
Theorem
matmulr
Description:
Multiplication in the matrix algebra.
(Contributed by
Stefan O'Rear
, 4-Sep-2015)
Ref
Expression
Hypotheses
matmulr.a
⊢
A
=
N
Mat
R
matmulr.t
⊢
·
˙
=
R
maMul
N
N
N
Assertion
matmulr
⊢
N
∈
Fin
∧
R
∈
V
→
·
˙
=
⋅
A
Proof
Step
Hyp
Ref
Expression
1
matmulr.a
⊢
A
=
N
Mat
R
2
matmulr.t
⊢
·
˙
=
R
maMul
N
N
N
3
ovex
⊢
R
freeLMod
N
×
N
∈
V
4
2
ovexi
⊢
·
˙
∈
V
5
3
4
pm3.2i
⊢
R
freeLMod
N
×
N
∈
V
∧
·
˙
∈
V
6
mulrid
⊢
⋅
𝑟
=
Slot
⋅
ndx
7
6
setsid
⊢
R
freeLMod
N
×
N
∈
V
∧
·
˙
∈
V
→
·
˙
=
⋅
R
freeLMod
N
×
N
sSet
⋅
ndx
·
˙
8
5
7
mp1i
⊢
N
∈
Fin
∧
R
∈
V
→
·
˙
=
⋅
R
freeLMod
N
×
N
sSet
⋅
ndx
·
˙
9
eqid
⊢
R
freeLMod
N
×
N
=
R
freeLMod
N
×
N
10
1
9
2
matval
⊢
N
∈
Fin
∧
R
∈
V
→
A
=
R
freeLMod
N
×
N
sSet
⋅
ndx
·
˙
11
10
fveq2d
⊢
N
∈
Fin
∧
R
∈
V
→
⋅
A
=
⋅
R
freeLMod
N
×
N
sSet
⋅
ndx
·
˙
12
8
11
eqtr4d
⊢
N
∈
Fin
∧
R
∈
V
→
·
˙
=
⋅
A