Metamath Proof Explorer


Theorem matmulr

Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypotheses matmulr.a A = N Mat R
matmulr.t · ˙ = R maMul N N N
Assertion matmulr N Fin R V · ˙ = A

Proof

Step Hyp Ref Expression
1 matmulr.a A = N Mat R
2 matmulr.t · ˙ = R maMul N N N
3 ovex R freeLMod N × N V
4 2 ovexi · ˙ V
5 3 4 pm3.2i R freeLMod N × N V · ˙ V
6 mulrid 𝑟 = Slot ndx
7 6 setsid R freeLMod N × N V · ˙ V · ˙ = R freeLMod N × N sSet ndx · ˙
8 5 7 mp1i N Fin R V · ˙ = R freeLMod N × N sSet ndx · ˙
9 eqid R freeLMod N × N = R freeLMod N × N
10 1 9 2 matval N Fin R V A = R freeLMod N × N sSet ndx · ˙
11 10 fveq2d N Fin R V A = R freeLMod N × N sSet ndx · ˙
12 8 11 eqtr4d N Fin R V · ˙ = A